Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D K C B E 1 2
a)Xét tam giác BED và tam giác BEC có:
BD=BC(gt)
Góc B1= góc B2 (Vì BK là tia phân giác của góc B)
BE chung
=> Tam giác BED= tam giác BEC(c.g.c)
b) Xét tam giác BKS và tam giác BKC có:
BK chung
Góc B1= góc B2 (Vì BK là tia phân giác của góc B)
DK=KC( vì K là trung điểm của DC)
=> Tam giác BKD= tam giác BKC(c.g.c)
=>BK vg góc với DC
hay EK vg góc với DC
c)VÌ EK vg góc với DC(cm b)
Mà BK vg góc với DC(cm b)
=> EK và BK cùng vg góc với DC
=> Ek trùng với BK
=>Ba điểm B,E,K thẳng hàng
a: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
b: Ta có: ΔBDE=ΔBCE
=>ED=EC
=>E nằm trên đường trung trực của DC(1)
Ta có: BD=BC
=>B nằm trên đường trung trực của CD(2)
Ta có: KD=KC
=>K nằm trên đường trung trực của CD(3)
Từ (1),(2),(3) suy ra B,E,K thẳng hàng
=>B,E,K cùng nằm trên đường trung trực của DC
=>EK\(\perp\)DC
c: ΔAHD vuông tại H có \(\widehat{DAH}=45^0\)
nên ΔAHD vuông cân tại H
Xét ΔBDC có BD=BC
nên ΔBCD cân tại B
mà \(\widehat{BDC}=45^0\)
nên ΔBCD vuông cân tại B
=>\(\widehat{ABC}=90^0\)
B C A D I E 1 2 H
a, Xét tam giác BED và tam giác BEC có:
BE chung
góc B1= góc B2
BC=BD
=> tam giác BED = tam giác BEC (c.g.c)
Xét tam giác BDI và tam giác BCI có:
BI chung
góc B1= góc B2
BD=BC
=> tam giác BDI = tam giác BCI (c.g.c)
=> DI=CI
b,Vì BD=BC => tam giác BDC cân tại B
Mà BI là tia phân giác góc B
=> BI đồng thời là đường cao
=> BI vuông góc với DC
Mà AH vuông góc với DC
=> BI//AH
A B C D E I H
Cm: a) Xét t/giác BED và t/giác BEC
có: BD = BC (gt)
\(\widehat{DBE}=\widehat{CBE}\)(gt)
BE : chung
=> t/giác BED = t/giác BEC (c.g.c)
Ta có: BD = BC (gt) => t.giác BCD cân
Mà BI là tia p/giác góc B của t/giác BCD
=> BI đồng thời là đường trung tuyến (t/c t/giác cân)
=> IC = ID
(phần này có thể xét 2 t/giác BID và t/giác BIC)
b) Ta có: t/giác BCD cân tại B
BI là tia p/giác của t/giác BCD
=> BI đồng thời là đường cao của t/giác (t/c của t/giác cân)
=> BI \(\perp\)DC
mà AH \(\perp\)DC
=> AH // BI (từ \(\perp\) đến //)
a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn)
b. Ta có BA = BE (Tam giác = tam giác câu a)
=> tam giác BAE cân tại B.
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC.
d. Xét tam giác ADF và tam giác EDC:
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt)
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng)
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ.
Vậy E,D,F thẳng hàng.
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3