Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
475 chia hết cho 5 + 1890 chia hết cho năm => 475 + 1890 chia hết cho 5 => tổng trên là hợp số
1.23.4..13 (tích các thừa số từ 1 -> 13) chia hết cho 7 (vì từ 1-> 13 cũng có thứa số 7 nên chia hết cho 7) + 49 chia hết cho 7 => 1.2.3.4..13 + 49 chia hết cho 7 => số trên là hợp số
Bạn làm tương tự những câu sau nhé,mình chỉ làm mẫu thế thôi.Phần lớn là ta nên tự suy luận mà ~~ Học tốt ~~
Số cây cam là:
120 : ( 2 + 3 ) x 2 = 48 (cây)
Số cây xoài là:
( 1 + 5 ) = 20 ( cây )
Số cây chanh là:
120 - ( 48 + 20 ) = 52 ( cây )
Đáp số : cam : 48 cây
xoài : 20 cây
chanh : 52 cây.
ai trên 10 điểm thì mình nha
a= 1.3.5.7...13+20 là hợp số
Vì 1.3.5.7...13 chia hết cho 5
Mà 20 cũng chia hết cho 5
Suy ra a = 1.3.5.7...13+20 chia hết cho 5 ( có nhieu hon 2 ước )
Nên a là hợp số.
Ta có: b = 147.247.347 -13
Vì 147.247.347 chia hết cho 13 (do trong 1 tích có 247 chia hết cho 13 ( =19))
Mà 13 chia hết cho 13
Suy ra b= 147.247.347 -13 Chia hết cho 13 ⇒Hợp số
Vậy a và b đều là hợp số.
Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số
Trong 25 số nguyên tố đầu tiên thì có 1 số chẵn ( số 2 ) , 24 số còn lại là lẻ.
Mà tổng của 24 số lẻ là chẵn, mà cộng với chẵn thì vẫn là chẵn . Vậy tổng 25 số nguyên tố đầu tiên là số chẵn.
a) 53 là số nguyên tố
b) 45 + 56 + 729 là hợp số
b) 151 là số nguyên tố
d) 5.7.8.11 - 132 là hợp số
73 là số nguyên tố
Các số 1431 ; 635 ; 119 là hợp số vì chúng có các ước 3,5,7
p là số nguyên tố > 3 =>p có dạng 3k+1 và 3k+2
+) Với p=3k+2 thì p+4=3k+2+4=3k+6 chia hết cho 3 =>p+4 là hợp số
Vậy 3k+1 thì p+4 là số nguyên tố
+) Với p=3k+1 thì p+8=3k+1+8=3k+9 chia hết cho 3 => p+8 là hợp số
Vậy p=3k+1 thì p+8 là hợp số
Ta có:
\(C=5+5^2+5^3+...+5^{2016}\)
\(C=5\cdot\left(1+5+5^2+...+5^{2015}\right)\)
\(\dfrac{C}{5}=1+5+5^2+...+5^{2015}\)
Mà: \(1+5+5^2+...+5^{2015}\) là 1 số nguyên nên
\(\dfrac{C}{5}\) là số nguyên: \(\Rightarrow C\) ⋮ 5
Nên C là hợp số
1 số mà mũ bao nhiêu lần đi nữa thì được 1 số sẽ chia hết cho số ban đầu
\(Vì\) \(5;5^2;5^3;5^4;5^5;...5^{2016}\) đều chia hết cho 5
Các số hạng trong 1 tổng đều chia hết cho 1 số thì tổng đó chia hết cho số đã cho
\(\Rightarrow\)\(5+5^2+5^3+5^4+...+5^{2016}⋮5\) và là hợp số
Vậy C là hợp số
là hợp số vì có nhiều hợp số trên dẫy biểu thức trên mà 1 biểu thức chia hết cho 1 số thì nhân với số nào thì vẫn chia hết cho số đó
hay 1 số nguyên tố nhân với 1 số bất kì thì tích chia hết cho cả 2 số
25⋮5 mà các dẫy số trên có 11 số chia hết cho 5(tính cả số hạng 25)nên kết quả biểu thức trên là hợp số