K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

7 tháng 2 2018

A = x^4+2x^2+1/(x^2+1)^2  -  2x^2/(x^2+1)^2

   = (x^2+1)^2/(x^2+1)^2 - 2x^2/(x^2+1)^2

   = 1 - 2x^2/(x^2+1)^2

   < = 1 - 0 = 1

Dấu "=" xảy ra <=> x=0

Vậy Max của A = 1 <=> x=0

Tk mk nha

7 tháng 2 2018
Min nữa bạn?
28 tháng 4 2016

3. A có 2n+1 số hạng chia thành n cặp thì thừa 1 số

 A= 1/(n+1) + 1/(n+2)...+1/2n+1/(2n+1)+ 1/3n+...+ 1/(3n+1)

   Mỗi cặp =1/(2n+1-k)+1/(2n+1+k)=(4n+2)/((2n+1)2-k2) >(4n+2)/(2n+1)2=2/(2n+1)

=>A>(2/(2n+1)).n+1/(2n+1)=1

28 tháng 4 2016

hai phân số hai đầu nhé!

24 tháng 12 2017

vào link này nhé

https://h.vn/hoi-dap/question/519160.html?pos=1454413

24 tháng 12 2017

cái ảnh ở cuối nhá

4 tháng 5 2017

mình 2k4 ko bt làm

6 tháng 5 2017

 a)    \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))

\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\)   KHI X= -1

c)  \(D=x^2-2x+y^2+4y+7\)

\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)

\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)

\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2

e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !

         \(E=\frac{x^2-4x+1}{x^2}\)

\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)

ĐẶT    \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2

Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm 

29 tháng 8 2017

bài 1 dễ òy tự lm mà nâng cao kiến thức ;))

Bài 2 ) làm mẫu ý b ; a vận dụng làm tương tự

Gọi \(A=\frac{x}{\left(x+100\right)^2}\)Ta có : \(A=\frac{x}{x^2+200x+10000}\)

\(\Leftrightarrow Ax^2+200Ax+10000A=x\)

\(\Leftrightarrow Ax^2+200Ax-x+10000A=0\)

\(\Leftrightarrow Ax^2+\left(200A-1\right)x+10000A=0\)

Để pt trên có nghiệm thì \(\Delta=\left(200A-1\right)^2-4.A.10000A\ge0\)

\(\Leftrightarrow40000A^2-400A+1-40000A^2\ge0\)

\(\Leftrightarrow-400A+1\ge0\Rightarrow A\le\frac{1}{400}\) có max là \(\frac{1}{400}\)

Dấu "=" xảy ra \(\Leftrightarrow x=100\)

Vậy \(A_{max}=\frac{1}{400}\) tại \(x=100\)

29 tháng 8 2017

Alo, cho hỏi cái bạn. cái tam giác là gì thế??? Giải giúp luôn bài 1 đi =((

20 tháng 1 2019

\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)

\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)

\(\le2+\frac{4.1006^2}{2012^2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)

\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

... 

20 tháng 1 2019

cảm ơn bạn nhiều

15 tháng 6 2020

Bài làm:

Bài 1:

Ta có: \(T=8x^2-4x+\frac{1}{4x^2}+15\)

\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}\right)+14\)

\(=\left(2x-1\right)^2+\left(4x^2+\frac{1}{4x^2}\right)+14\)\(\ge0+2\sqrt{4x^2.\frac{1}{4x^2}}+14=2+14=16\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-1\right)^2=0\\4x^2=\frac{1}{4x^2}\end{cases}\Rightarrow x=\frac{1}{2}}\)

Vậy \(Min\left(T\right)=16\)khi \(x=\frac{1}{2}\)

Bài 2:

Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=3\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\left(1\right)\)

Ta xét \(\frac{a^2}{c\left(c^2+a^2\right)}=\frac{\left(c^2+a^2\right)-c^2}{c\left(c^2+a^2\right)}=\frac{1}{c}-\frac{c}{c^2+a^2}=\frac{1}{c}-\frac{1}{a}.\frac{ac}{c^2+a^2}\ge\frac{1}{c}-\frac{1}{a}.\frac{ac}{2ac}=\frac{1}{c}-\frac{1}{2}a\)

Tương tự ta chứng minh được: \(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2}b\)và \(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2}c\)

Cộng vế 3 bất đẳng thức trên lại ta được:

\(P\ge\frac{1}{c}-\frac{1}{2}a+\frac{1}{a}-\frac{1}{2}b+\frac{1}{b}-\frac{1}{2}c\)\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\left(theo\left(1\right)\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a^2=b^2\\b^2=c^2\\c^2=a^2\end{cases}\Rightarrow a=b=c=1}\)

Vậy \(Min\left(P\right)=\frac{3}{2}\)khi \(a=b=c=1\)

Học tốt!!!!