Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán này bạn chỉ cần quan tâm đến phương án D là đúng thôi, vì để chứng minh B, C sai thì lại tương đối phức tạp, không cần thiết.
Theo giả thiết uC trễ pha pi/2 so vơi u --> u cùng pha với i --> Cộng hưởng, cường độ dòng điện đạt cực đại.
Vậy khi tăng f thì cường độ I giảm.
Chọn D.
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Áp dụng công thức:
$P_1=\dfrac{U^2}{R_1}\cos ^2\varphi _1$ và $P_2=\dfrac{U^2}{R_2}\cos ^2\varphi _2$
$\Leftrightarrow 60=\dfrac{100^2}{50}\cos ^2\varphi _1\Leftrightarrow \cos ^2\varphi _1=\dfrac{3}{10}$
$\Leftrightarrow \cos ^2\varphi _2=\dfrac{9}{20}$
$\Leftrightarrow P_2=180$
$\dfrac{P_2}{P_1}=3$
Mình giải thích rõ hơn công thức của bạn Nguyễn Trung Thành
iOUUUUULRCRC→→→→→→abc
Nhận xét:
+ Khi L thay đổi thì góc b và c không đổi (do R và ZC không đổi).
+ Khi L = L0 để UL max thì a0 + b = 900.
Áp dụng định lí hàm số sin trong tam giác OULUC:
\( \frac{U_L}{\sin(a+b)}=\frac{U}{\sin c}=const\)
\(\Rightarrow\frac{U_L}{\sin(a_1+b)}=\frac{U_L}{\sin(a_2+b)}\Rightarrow \sin(a_1+b)=\sin(a_2+b)\Rightarrow a_1+b=\pi-(a_2+b)\)
\(\Rightarrow a_1+a_2=\pi-2b\) Mà \(a_0+b=\frac{\pi}{2}\Rightarrow 2a_0=\pi-2b\)
\(\Rightarrow a_1+a_2=2a_0\)
Hay: \(\varphi_0=\frac{\varphi_1+\varphi_2}{2}\)
Áp dụng công thức: \(\varphi_0=\frac{\varphi_1+\varphi_2 }{2}\Rightarrow\varphi_0=\frac{0,56+0,98 }{2}=0,77\)
\(\Rightarrow \cos\varphi_0=\cos0,77=0,72\)
Đáp án B.
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Pha của dòng điện so với điện áp là độ lệch pha của i đối với u mạch, nhưng nếu theo các phương án như đề bài thì mình nghĩ là tìm hệ số công suất của mạch.
Không mất tính tổng quát, ta lấy: \(U_R=3V\)
Suy ra: \(U_L=\sqrt{3}V\)
\(U_C=2\sqrt{3}V\)
\(\Rightarrow U=\sqrt{U_R^2+\left(U_L-U_C\right)^2}=2\sqrt{3}\)
Hệ số công suất: \(\cos\varphi=\frac{U_R}{U}=\frac{3}{2\sqrt{3}}=\frac{\sqrt{3}}{2}\)