K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Mình viết quy trình bấm phím luôn nhé :

  • Quy trình tính Un\(D=D+1:A=\sqrt[3]{B.C^2+2010}:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:C=B:B=A\)

Bấm CALC , Máy hỏi D? -> 2

B? -> 2

C? -> 1

Bấm liên tiếp dấu "=" , D chính là trị số của Un cần tìm.

Từ đó tính được U10 = 22,063283 ; U15 = 25,562651 ; U21 = 29,008768 ; U27 = 31,791400

  • Quy trình bấm phím Sn :

\(D=D+1:A=\sqrt[3]{B.C^2+2010}:X=X+A:C=B:B=A:D=D+1:A=\sqrt[3]{B^2.C+2011}:X=X+A:C=B:B=A\)

Bấm CALC , nhập D = 2 , B = 2 , C = 1 , X = 0

Bấm liên tiếp dấu "=" . D chính là trị số của Sn cần tìm.

Được S10 = 141,181370 ; S15 = 262,375538 ; S21 = 428,820575 ; S27 = 613,330707

 

 

26 tháng 10 2016

Quy trình bấm phím Un : A chính là Un

Quy trình bấm phím Sn : X chính là Sn

Các giá trị D = 3 tức là U3 (số 3 thôi nhé) , D = 4 tức U4 ...

28 tháng 5 2017

bn lên gg surt "Quy nạp theo công thức truy hồi" nhé

4 tháng 1 2018

\(99...9=10^n-1\)(n chữ số 9)

\(0,99...9=1-\dfrac{1}{10^n}\)(n chữ số 9)

\(\sqrt{1+99...9^2+0.99...99^2}\\ =\sqrt{1+\left(10^n-1\right)^2+\left(1-\dfrac{1}{10^n}\right)^2}\\ =\sqrt{1+10^{2n}+1-2.10^n+1+\dfrac{1}{10^{2n}}-\dfrac{2}{10^n}}\\ =\sqrt{3+10^{2n}-2.10^n+\dfrac{1}{10^{2n}}-\dfrac{2}{10^n}}\\ =\sqrt{\dfrac{3.10^{2n}+10^{4n}-2.10^{3n}+1-2.10^n}{10^{2n}}}\\ =\sqrt{\dfrac{\left(10^{2n}-10^n+1\right)^2}{10^{2n}}}=\dfrac{10^{2n}-10^n+1}{10^n}\\ =10^n-1+\dfrac{1}{10^n}=99...9+1-0,99...9=99...9,00...1\)

(n chữ số 9,n-1 chữ số 0)

15 tháng 5 2019

\(S_1=1\) (còn \(S_n=1\Rightarrow S=2015\))

Tính được \(S_1=1;S_2=-2-\sqrt{3};S_3=-2+\sqrt{3};S_4=1\)

Vậy \(S_i=S_{i+3}\left(i\ge1\right)\)

\(S_1+S_2+S_3=-3\)

\(\Rightarrow S=\sum\limits^{2015}_{i=1}\left(S_i\right)=-3\cdot668+S_{2015}=-3\cdot668+1=-2003\)

#Kaito#

29 tháng 5 2017

ta chứng minh 0,99...9 < \(\sqrt{0,999...9}\)< 0,999...9 (hai số đầu có 2005 số 9, số cuối có 2006 số 9).    (1)

Khi đó 2005 chữ số thập phân đầu tiên của \(\sqrt{0,999...9}\) là 2005 chữ số 9.

thật vậy, dễ dàng chứng minh BĐT đầu bằng cách bình phương hai vế.

ta chứng minh BĐT thứ 2.

với số dạng 0,999....9 (n chữ số 9) ta có 0,999...9 = \(\frac{1}{10^n}\left(10^n-1\right)\)

do đó BĐT thứ 2 sẽ là \(\frac{1}{10^{2005}}\left(10^{2005}-1\right)< \left(\frac{1}{10^{2006}}\left(10^{2006}-1\right)\right)^2\)

phá ngoặc nhân chéo ta được 102007(102005 - 1) < (102006 - 1)2

hay 104012 - 102007 < 104012 - 2. 102006 + 1

hay 8. 102006 + 1 > 0. vậy BĐT thứ 2 đúng hay (1) đúng.

3 tháng 7 2017

hình như thừa cái căn ngoài cùng

3 tháng 7 2017

Đề đúng bạn ơi !!