Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chỉ là thay số nên bạn tự làm nhé.
b) \(y_1=1\), \(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\), \(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.
Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\), \(k\)chẵn thì \(y_k=0\)(1).
Khi đó ta có:
\(A=y_1+y_2+...+y_{2021}\)
\(A=1+0+1+...+1\)
\(A=\frac{2021-1}{2}+1=1011\)
a)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n-1}< 1\)
=>\(0< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) không phải là số nguyên
mà n -1 là số nguyên
=> \(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)
\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)không là số nguyên
a: để P là số nguyên thì \(3n-3+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
b: Để Q là số nguyên thì \(3\left|n\right|-1+2⋮3\left|n\right|-1\)
\(\Leftrightarrow3\left|n\right|-1\in\left\{1;-1;2\right\}\)
\(\Leftrightarrow\left|n\right|\in\left\{0;1\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Pn=\(\frac{2}{3}\times\frac{5}{6}\times...\times\frac{\frac{\left(n+1\right)n}{2}-1}{\frac{\left(n+1\right)n}{2}}\)
= \(\frac{4}{6}\times\frac{10}{12}\times...\times\frac{n\left(n+1\right)-2}{n\left(n+1\right)}\)
= \(\frac{1\times4}{2\times3}\times\frac{2\times5}{3\times4}\times...\times\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
= \(\frac{1\times2\times...\times\left(n-1\right)}{2\times3\times...\times n}\times\frac{4\times5\times...\times\left(n+2\right)}{3\times4\times...\times\left(n+1\right)}\)
= \(\frac{1}{n}\times\frac{n+2}{3}\)
=\(\frac{n+2}{3n}\)
=> \(\frac{1}{Pn}\)=\(\frac{3n}{n+2}\)
Đến đây thì bạn tự giải tiếp nhé.
Chúc bạn học tốt!
\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(\Rightarrow P_n=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(P_n=\frac{1.2.3...\left(n-1\right)}{2.3.4...n}.\frac{4.5...\left(n+2\right)}{3.4...\left(n+1\right)}=\frac{n+2}{3n}\)
\(\Rightarrow\frac{1}{P_n}=\frac{3n}{n+2}=3-\frac{6}{n+2}\in Z\)
\(\Rightarrow n+2=Ư\left(6\right)=\left\{3;6\right\}\Rightarrow n=\left\{1;4\right\}\)