Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 2x2 - 8xy - 5x + 20y
= (2x2 - 5x) - (8xy - 20y)
= x(2x - 5) - 4y(2x - 5)
= (2x - 5) (x - 4y)
2, x3 - x2y - xy + y2
= (x3 - xy) - (x2y - y2)
= x(x2 - y) - y(x2 - y)
= (x2 - y) (x - y)
3, x2 - 2xy - 4z2 + y2
= (x2 - 2xy + y2) - 4z2
= (x - y)2 - (2z)2
= (x - y - 2z) (x - y + 2z)
4, a3 + a2b - a2c - abc
= (a3 - a2c) + (a2b - abc)
= a2(a - c) + ab(a - c)
= (a - c) (a2 + ab)
5, x3 + y3 + 3x2y + 3xy2 - x - y
= (x3 + 3x2y + 3xy2 + y3) - (x + y)
= (x + y) 3 - (x + y)
= (x + y) [(x + y)2 - 1]
= (x + y) (x + y - 1) (x + y + 1)
a) x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y )( x + 2 + y )
b) x2 - 2xy + y2 - 1
= ( x2 - 2xy + y2 ) - 1
= ( x - y )2 - 12
= ( x - y - 1 )( x - y + 1 )
c) x2 - 2xy + y2 - 4
= ( x2 - 2xy + y2 ) - 4
= ( x - y )2 - 22
= ( x - y - 2 )( x - y + 2 )
d) x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
e) 25 - x2 + 4xy - 4y2
= 25 - ( x2 - 4xy + 4y2 )
= 52 - ( x - 2y )2
= ( 5 - x + 2y )( 5 + x - 2y )
f) x2 + y2 - 2xy - 4z2
= ( x2 - 2xy + y2 ) - 4z2
= ( x - y )2 - ( 2z )2
= ( x - y - 2z )( x - y + 2z )
a) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x+y-y-z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)^3-x^3-y^3\right]+3z\left(x+y\right)\left(x+y+z\right)\)
\(=3xy\left(x+y\right)+3\left(x+y\right)\left(xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
d) \(\left(x^2+y^2-5\right)^2-4x^2y^2-16xy-16\)
\(=\left(x^2+y^2-5\right)^2-\left(4x^2y^2+16xy+16\right)\)
\(=\left(x^2+y^2-5\right)^2-\left[\left(2xy\right)^2+2.2xy.4+16\right]\)
\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)
\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)
\(=\left(x^2-2xy+y^2-9\right)\left(x^2+2xy+y^2-1\right)\)
\(=\left[\left(x-y\right)^2-3^2\right]\left[\left(x+y\right)^2-1\right]\)
\(=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-1\right)\left(x+y+1\right)\)
e) \(\left(x^2+4y^2-5\right)^2-16\left(x^2y^2+2xy+1\right)\)
\(=\left(x^2+4y^2-5\right)^2-4^2\left(xy+1\right)^2\)
\(=\left(x^2+4y^2-5\right)^2-\left[4\left(xy+1\right)\right]^2\)
\(=\left(x^2+4y^2-5\right)-\left(4xy+4\right)^2\)
\(=\left(x^2+4y^2-5-4xy-4\right)\left(x^2+4y^2-5+4xy+4\right)\)
\(=\left(x^2+4y^2-4xy-9\right)\left(x^2+4y^2+4xy-1\right)\)
\(=\left[\left(x-2y\right)^2-3^2\right]\left[\left(x+2y\right)^2-1\right]\)
\(=\left(x-2y-3\right)\left(x-2y+3\right)\left(x+2y-1\right)\left(x+2y+1\right)\)
f) \(\left(x-y+5\right)^2-2\left(x-y+5\right)+1\)
\(=\left(x-y+5-1\right)^2\)
\(=\left(x-y+4\right)^2\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
Học tốt
\(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
a) \(x^2+4x-y^2+4=\left(x^2+4x+4\right)-y^2\)
\(\left(x+2\right)^2-y^2=\left(x+2-y\right).\left(x+2+y\right)\)
b) \(3x^2+6xy+3y^2-3z^2\Leftrightarrow\left(\sqrt{3}x+\sqrt{3}y\right)^2-\left(\sqrt{3}z\right)^2\)
\(\Leftrightarrow\left(\sqrt{3}x+\sqrt{3}y-\sqrt{3}z\right).\left(\sqrt{3}x+\sqrt{3}y+\sqrt{3}z\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(\Leftrightarrow\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\)