Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Khi ω = ω2 = 100π rad/s thì cường độ dòng điện hiệu dụng qua mạch đạt giá trị cực đại → xảy ra cộng hưởng
Chọn đáp án D
Khi ω = ω 2 = 100π rad/s thì cường độ dòng điện hiệu dụng qua mạch đạt giá trị cực đại → xảy ra cộng hưởng,
Khi ω = ω 1 thì =100 ,= 25
Chọn đáp án D
Khi ω = ω 2 = 100π rad/s thì cường độ dòng điện hiệu dụng qua mạch đạt giá trị cực đại → xảy ra cộng hưởng, ω 2 = 1 L C = 100π
Khi ω = ω 1 thì z L = ω 1 L =100 , z C = 1 ω 1 C = 25 → 1 ω 1 2 L C = 25 100 = 1 4 → ω 2 2 ω 1 2 = 1 4 → ω 2 ω 1 = 1 2
→ ω 1 = 2 ω 2 = 200π rad/s.
Đáp án B
Phương pháp: Điều kiện cực trị khi tần số thay đổi.
Cách giải: Khi tần số góc thay đổi thì có các giá trị để điện áp trên cuộn cảm hay tụ đạt cực đại.
Ta có:
Và điện áp trên tụ cực đại là:
Dễ thấy:
Đáp án B
I = U R 2 + ω L - 1 ω L 2 . Theo bài I 1 = I 2 = I m a x 5 hay Z 1 = Z 2 = 5 Z
R 2 + L ω 1 - 1 C ω 1 2 = R 2 + L ω 2 - 1 C ω 2 2 = 5 R
Kết hợp với ω1 > ω2 → khi ω = ω1 mạch có tính cảm kháng, khi ω = ω2 mạch có tính dung kháng.
L ω 1 - 1 C ω 1 = 2 R L ω 2 - 1 C ω 2 = - 2 R ⇒ L ω 1 2 - ω 2 2 = 2 R ω 1 + ω 2 ⇒ R = L ω 1 - ω 2 2 = 25 Ω
Đáp án B
Phương pháp: điều kiện cực trị khi tần số thay đổi.
Cách giải:
Khi tần số góc thay đổi thì có các giá trị để điện áp trên cuộn cảm hay tụ đạt cực đại. ta có:
Khi dung kháng là $100 \Omega$ thì công suất tiêu thụ của đoạn mạch là cực đại bằng 100 W nên
\(\begin{cases} Z_L=Z_{C_1}=100 \Omega \\ P=\dfrac{U^2}{R} =100 W \end{cases}\)
Khi dung kháng là $200 \Omega$ thì điện áp hiệu dụng giữa hai đầu tụ điện là $100\sqrt{2} V$ nên
$U_{C_2}=\dfrac{U.Z_{C_2}}{Z}=\dfrac{200.U}{\sqrt{R^2+(100-200)^2}}=100\sqrt{2}$
$\Rightarrow 2U^2=R^2+100^2$
$\Rightarrow 2.100.R =R^2 +100^2$
$\Rightarrow R=100 \Omega$
Đáp án A
+ Khi U c m a x ⇒ ω = ω c = 1 L C - R 2 2 L 2 = 100 π
+ Khi U L m a x ⇒ ω = ω L = 2 2 L C - R 2 C 2 = 200 π
+ ω L = 2 ω C ⇒ R 2 = L C ⇒ R = L C
+ U L m a x = 2 U L R 4 L C - R 2 C 2 = 2 U L L C 4 L C - L C C 2 = 2 U 3