Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
A = 1- 2 -3+4 +5 -6 -7 +8 +....+ 2021- 2022 - 2023
A = 1-2 -3+4 +5 -6 -7 + 8 +....+ 2021 -2022 - 2023 + 2024 - 2024
Xét dãy số: 1; 2; 3; 4; 5; 6; 7;.....;2024
Dãy số trên có số số hạng là:( 2024 - 1):1 + 1 = 2024
vì 2024 : 4 = 506
Nên ta nhóm 4 số hạng liên tiếp trong tổng A thành 1 nhóm thì ta được tổng A là tổng của 506 nhóm và (-2024).
Mỗi nhóm có giá trị: 1-2-3+4 = 0
A = 0 x 506 + ( -2024)
A = 0 + ( -2024)
A = -2024
Ta có \(4A=2^2+2^4+2^6+2^8...+2^{2024}\)
Từ đó \(3A=4A-A=\left(2^2+2^4+...+2^{2024}\right)-\left(1+2^2+...+2^{2022}\right)\)
\(=2^{2024}-1\)
Mà \(2B=2^{2024}\)
Từ đó dễ dàng suy ra được \(3A\) và \(2B\) là 2 số liên tiếp.
Có 7 số tự nhiên được chọn sao cho tổng của hai số bất kì trong các số đó đều chia hết cho 7. Hỏi trong các số đó, có bao nhiêu số chia hết cho 7?
\(A=2+4+4^2+...+4^{2022}+4^{2023}\)
\(A=2+2^2+\left(2^2\right)^2+\left(2^2\right)^3+...+\left(2^2\right)^{2022}+\left(2^2\right)^{2023}\)
\(A=2+2^2+2^4+2^6+...+2^{4046}\)
\(A=2+2^4+\left(2^6+2^8+2^{10}\right)+\left(2^{12}+2^{14}+2^{16}\right)+...+\left(2^{4042}+2^{4044}+2^{4046}\right)\)
\(A=2+2^4+2^6\cdot\left(1+4+16\right)+2^{12}\cdot\left(1+4+16\right)+...+2^{4042}\cdot\left(1+4+16\right)\)
\(A=2+2^4+2^6\cdot21+2^{12}\cdot21+...+2^{4042}\cdot21\)
\(A=2+16+21\cdot\left(2^6+2^{12}+...+2^{4042}\right)\)
\(A=4+14+21\cdot\left(2^6+2^{12}+...+2^{4042}\right)\)
\(A=4+7\cdot\left[2+3\cdot\left(2^6+2^{12}+...+2^{4042}\right)\right]\)
Mà: \(7\cdot\left[2+3\cdot\left(2^6+2^{12}+...+2^{4042}\right)\right]\) ⋮ 7
⇒ \(A=4+7\cdot\left[2+3\cdot\left(2^6+2^{12}+...+2^{4042}\right)\right]\) : 7 dư 4
Vậy: ...
A = 2 + 4 + 4² + ... + 4²⁰²² + 4²⁰²³
= 2 + 4 + (4² + 4³ + 4⁴) + (4⁵ + 4⁶ + 4⁷) + ... + (4²⁰²¹ + 4²⁰²² + 4²⁰²³)
= 6 + 4.(4 + 4² + 4³) + 4⁴.(4 + 4² + 4³) + ... + 4²⁰²⁰.(4 + 4² + 4³)
= 6 + 4.84 + 4⁴.84 + ... + 4²⁰²⁰.84
= 6 + 84.(4 + 4⁴ + ... + 4²⁰²⁰)
= 6 + 7.12.(4 + 4⁴ + ... + 4²⁰²⁰)
Mà 7.12.(4 + 4⁴ + ... + 4²⁰²⁰)
⇒ 6 + 7.12.(4 + 4⁴ + ... + 4²⁰²⁰) chia 7 dư 6
Vậy A chia 7 dư 6