K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

với hàm số f(x) , x=2 thì f(x)= 0 khi x=2(theo bảng)

vậy với f(x-1) thì lúc x=3 sẽ có 3-1=2 khi này f(x-1) =0. (cứ coi x-1 là ẩn u đi => f(u) , còn không lấy đại một hàm số nào đó làm thử sẽ thấy liên hệ này (nếu không hiểu))

vậy hàm số y sẽ đồng biến (3,\(\infty\)) chứa (3,4).

tôi không biết trình bày.

18 tháng 7 2019

Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

7 tháng 7 2017

Do hàm số y = f(x) nghịch biến trên khoảng (a;b) nên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy hàm số y = - f(x) đồng biến trên khoảng (a;b).

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

19 tháng 10 2018

Đáp án A

31 tháng 5 2018

Đáp án B

Nhận xét:

Bảng biến thiên có bề lõm hướng lên. Loại đáp án A và C.

Đỉnh của parabol có tọa độ là (2; −5). Xét các đáp án còn lại, đáp án B thỏa mãn.

24 tháng 7 2019

Đáp án D