\(2\left|x-3\right|\ge0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án đề thi vòng 2:

Bài 1:
a, Ta có: \(2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow A=9-2\left|x-3\right|\le9\)

Dấu " = " xảy ra khi \(2\left|x-3\right|=0\Rightarrow x=3\)

Vậy \(MAX_A=9\) khi \(x=3\)

b, Ta có: \(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(B=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=\left|6\right|=6\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}x-2\ge0\\8-x\ge0\end{matrix}\right.\Rightarrow2\le x\le8\)

Vậy \(MIN_B=6\) khi \(2\le x\le8\)

Bài 2:
a, Ta có: \(a^3+b^3+c^3=0\Rightarrow\left\{{}\begin{matrix}b^3+c^3=-a^3\\a^3+b^3=-c^3\end{matrix}\right.\)

\(\Rightarrow a^3b^3+2b^3c^3+3c^3a^3=a^3b^3+c^3a^3+2c^3a^3+2b^3c^3\)

\(=a^3\left(b^3+c^3\right)+2c^3\left(a^3+b^3\right)\)

\(=a^3\left(-a^3\right)+2c^3\left(-c^3\right)=-a^6-2c^6\le0\)

\(\Rightarrowđpcm\)

b, Ta có: \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=8-1=\sqrt{61-1}< \sqrt{65}-1\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

Bài 3:

a, Giải:

Gọi 3 cạnh của tam giác tỉ lệ với 2, 3, 4 là a, b, c và 3 chiều cao tương ứng là x, y, z \(\left(a,b,c,x,y,z>0\right)\)

Ta có: \(2S=ax=by=cz\)

\(\Rightarrow\dfrac{a}{2}x.2=\dfrac{b}{3}y.3=\dfrac{c}{4}z.4\)

\(\Rightarrow2x=3y=4z\)

\(\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

Vậy 3 chiều cao tương ứng của 3 cạnh đó tỉ lệ với 6, 4, 3

b, Giải:

Gọi hai số cần tìm là \(x,y\left(x,y\ne0;x>y\right)\)

Ta có: \(\dfrac{x+y}{4}=\dfrac{x-y}{1}=\dfrac{xy}{45}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y}{4}=\dfrac{x-y}{1}=\dfrac{x+y-x+y}{4-1}=\dfrac{2y}{3}=\dfrac{xy}{45}\)

Tương tự \(\Rightarrow\dfrac{2x}{5}=\dfrac{2y}{3}=\dfrac{xy}{45}\)

\(\Rightarrow18x=30y=xy\)

\(\Rightarrow x=30,y=18\)

Vậy x = 30, y = 18

Bài 4:

A B C K H E M D

Giải:

Gọi H là trung điểm của cạnh AC. K là giao điểm của BE và DH

Ta có: DH // AB, \(DH=\dfrac{AB}{2}=\dfrac{AC}{2}\)

Xét \(\Delta EDK,\Delta EBA\) có:

\(\widehat{DEK}=\widehat{AEB}\) ( đối đỉnh )

ED = EA ( gt )

\(\widehat{EDK}=\widehat{EAB}\) ( so le trong do DH // AB )

\(\Rightarrow\Delta EDK=\Delta EAB\left(g-c-g\right)\)

\(\Rightarrow DK=AB\) ( cạnh tương ứng )

\(\Rightarrow DH=\dfrac{DK}{2}\)

\(\Rightarrow\)H là trung điểm của DK

\(\Delta MDK\) vuông tại M, MH là trung tuyến \(\Rightarrow MH=\dfrac{DK}{2}\)

\(\Rightarrow MH=\dfrac{AC}{2}\)

\(\Delta MAC\) có MH là đường trung tuyến và \(MH=\dfrac{AC}{2}\)

\(\Rightarrow\Delta MAC\) vuông tại M

\(\Rightarrow AM\perp MC\left(đpcm\right)\)

Bài 5:

a, Giải:
p, q là các số nguyên tố lớn hơn 2

\(\Rightarrow p,q\) là số lẻ

Đặt \(p+q=2a\left(a\in N^{\circledast}\right)\)

\(\Rightarrow\dfrac{p+q}{2}=a\)

Vì p < q \(\Rightarrow p+p< p+q< q+q\)

\(\Rightarrow2p< 2a< 2q\)

\(\Rightarrow p< a< q\)

Mà p, q là hai số nguyên tố liên tiếp

\(\Rightarrow\)a là hợp số

Vậy \(\dfrac{p+q}{2}\) là hợp số

b, Vì \(x,y\in N^{\circledast}\Rightarrow100x+43\le100x+100y\)

\(\Rightarrow\left(x+y\right)^5\le100\left(x+y\right)\)

\(\Rightarrow\left(x+y\right)^4\le100< 4^4\)

\(\Rightarrow x+y< 4\)

\(x+y\ge2\left(x,y\in N^{\circledast}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x+y=3\end{matrix}\right.\)

+) \(x+y=2\Rightarrow x=y=1\) ( thỏa mãn )

+) \(x+y=3\)

\(\Rightarrow x=2,y=1\) ( thỏa mãn )

\(\Rightarrow x=1,y=2\) ( không thỏa mãn )

Vậy \(x=y=1\) hoặc \(x=2,y=1\)

11
2 tháng 6 2017

Cho tui hỏi này nhé: Câu b bài cuối có phải trog đề thi vào chuyên quốc hx huế ko? Tui chỉ mới thấy qua chứ ko bk có đúng ko thôi? hjhj

2 tháng 6 2017

hihi

3 tháng 9 2019

\(a,\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}\)\(=\frac{3^3.5^3}{\left(-3\right)^5.5^2}\)\(=-\frac{5}{\left(3\right)^2}=-\frac{5}{9}\)

\(b,\frac{6^3.2.\left(-3\right)^2}{\left(-2\right)^9.3^7}\)\(=-\frac{6^3}{2^8.3^5}\)\(=-\frac{2^3.3^3}{2^8.3^5}\)\(=-\frac{1}{2^5.3^2}=-\frac{1}{288}\)

\(c,\frac{3^6.7^2-3^7.7}{3^7.21}\)\(=\frac{3^6.7\left(7-3\right)}{3^7.21}\)\(=\frac{3^6.7.4}{3^7.7.3}\)\(=\frac{4}{3.3}=\frac{4}{9}\)

3 tháng 9 2019

\(a,\left(x-1,2\right)^2=4\)

\(\Rightarrow x-1,2=2\)

\(\Rightarrow x=3,2\)

\(b,\left(x+1\right)^3=-125\)

\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)

\(\Rightarrow x+1=-5\Rightarrow x=-6\)

\(c,\left(x-5\right)^3=2^6\)

\(\Rightarrow\left(x-5\right)^3=4^3\)

\(\Rightarrow x-5=4\Rightarrow x=9\)

\(d,\left(2x+1\right)^{x+1}=5^{x+1}\)

\(\Rightarrow2x+1=5\Rightarrow x=2\)

10 tháng 5 2019

What???

11 tháng 5 2019

Nà ní!!!!!!!!!

a: TH1: x>=0

=>x+x=1/3

=>x=1/6(nhận)

TH2: x<0

Pt sẽ là -x+x=1/3

=>0=1/3(loại)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)

c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)

\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)

\(\Leftrightarrow3x^2-63x+60=4x+72\)

=>3x^2-67x-12=0

hay \(x\in\left\{22.51;-0.18\right\}\)

20 tháng 9 2018

a, \(\left(x-3\right)\left(x+2\right)>0\)

th1 : \(\hept{\begin{cases}x-3>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-2\end{cases}\Rightarrow}x>3}\)

th2 : \(\hept{\begin{cases}x-3< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -3\end{cases}\Rightarrow}x< -3}\)

vậy x > 3 hoặc x < -3

b, \(\left(x+5\right)\left(x+1\right)< 0\)

th1 : \(\hept{\begin{cases}x+5>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-5\\x< -1\end{cases}\Rightarrow x\in\left\{-4;-3;-2\right\}}}\)

th2 : \(\hept{\begin{cases}x+5< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< -5\\x>-1\end{cases}\Rightarrow}x\in\varnothing}\)

vậy x = -4; -3; -2

c, \(\frac{x-4}{x+6}\le0\)

xét \(\frac{x-4}{x+6}=0\)

\(\Rightarrow x-4=0;x\ne-6\)

\(\Rightarrow x=4\ne-6\)

xét \(\frac{x-4}{x+5}< 0\)

th1 : \(\hept{\begin{cases}x-4< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 4\\x>-5\end{cases}\Rightarrow}x\in\left\{3;2;1;0;-1;-2;-3;-4\right\}}\)

th2 : \(\hept{\begin{cases}x-4>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>4\\x< -5\end{cases}\Rightarrow x\in\varnothing}}\)

d tương tự c

20 tháng 9 2018

\(\frac{\left(x-6\right)}{x-7}\ge0\)

Th1: x - 6 < 0

<=> x - 6 + 6 < 0 + 6

<=> x - 6 + 6 > 0 + 6

=> x < 6

Th2: x - 7

<=> x - 7 + 7 < 0 + 7

<=> x - 7 + 7 > 0 + 7

=> x > 7

=> x < 6 hoặc x > 7

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

a: \(\Leftrightarrow\left(\dfrac{3}{4}\right)^x=\left(\dfrac{4}{3}\right)^4=\left(\dfrac{3}{4}\right)^{-4}\)

=>x=-4

b: =>(x-2)(x-1)(x-3)=0

hay \(x\in\left\{2;1;3\right\}\)

c: =>(x-2)(x+3)=0

=>x=2 hoặc x=-3