K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2021

\(-1\le sin\left(x^2\right)\le1\Rightarrow\)\(0\le\sqrt{1-sin\left(x^2\right)}\le\sqrt{2}\Rightarrow-1\le y\le\sqrt{2}-1\)

\(y_{min}=-1\) khi \(sin\left(x^2\right)=1\Rightarrow x=\pm\sqrt{\dfrac{\pi}{2}+k2\pi}\) (\(k\in N\))

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(x^2\right)=-1\Rightarrow x=\pm\sqrt{-\dfrac{\pi}{2}+k2\pi}\) (\(k\in Z^+\))

NV
13 tháng 9 2021

ĐKXĐ:

a. \(cos\left(x-\dfrac{2\pi}{3}\right)\ne0\Rightarrow x-\dfrac{2\pi}{3}\ne\dfrac{\pi}{2}+k\pi\Rightarrow x\ne\dfrac{\pi}{6}+k\pi\)

b. \(sin\left(x+\dfrac{\pi}{6}\right)\ne0\Rightarrow x+\dfrac{\pi}{6}\ne k\pi\Rightarrow x\ne-\dfrac{\pi}{6}+k\pi\)

c. \(\dfrac{1+x}{2-x}\ge0\Rightarrow-1\le x< 2\)

3 tháng 4 2017

Đồ thị hàm số y = sin x trên đoạn [-2π, 2π]

Dựa vào đồ thị hàm số y = sinx

a) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị bằng -1 là:

x=−π2;x=3π2x=−π2;x=3π2

b) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị âm là:

x ∈ (-π, 0) ∪ (π, 2 π)


28 tháng 6 2018

Ta có y= 2sin2x +1.

Do  - 1 ≤ sin 2 x ≤ 1 ⇒ - 2 ≤ 2 sin 2 x ≤ 2

⇒ - 1 ≤ 2 sin 2 x   + 1 ≤ 3   ⇒ - 1 ≤ y ≤ 3

Vậy giá trị lớn nhất của hàm số bằng , giá trị nhỏ nhất bằng .

Chọn C.

9 tháng 4 2017

a) y' = 5cosx -3(-sinx) = 5cosx + 3sinx;

b) = = .

c) y' = cotx +x. = cotx -.

d) + = = (x. cosx -sinx).

e) = = .

f) y' = (√(1+x2))' cos√(1+x2) = cos√(1+x2) = cos√(1+x2).

 

NV
12 tháng 7 2021

\(y=1-cos2x+2sin2x+6=2sin2x-cos2x+7\)

\(y=\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sin2x-\dfrac{1}{\sqrt{5}}cos2x\right)+7\)

Đặt \(\dfrac{2}{\sqrt{5}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)

\(y=\sqrt{5}sin\left(2x-a\right)+7\)

\(\Rightarrow-\sqrt{5}+7\le y\le\sqrt{5}+7\)

4 tháng 4 2017

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11