Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(W= W_{Cmax}=W_C+W_L\)
=> \(W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)= 5.10^{-7}J.\)
\(1=LC\omega^2=LC4\pi^2f^2\)
\(C=\frac{1}{L4\pi^2f^2}=\frac{8.10^{-6}}{\pi}F\)
\(\rightarrow A\)
Ta có: \(W=W_t+W_d\)
\(\Leftrightarrow W_t=W_{dmax}-W_d\)
\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)
\(=5.10^{-5}J\)
\(\lambda_{max}\le\lambda\le\lambda_{min}\Leftrightarrow c.2\pi\sqrt{L_{min}.C_{min}}\le\lambda c.2\pi\sqrt{L_{max}C_{max}}\)
\(\Leftrightarrow18,8m\le\lambda\le421,5m\)
Đáp án B
Tần số: \(f=\dfrac{1}{2\pi\sqrt {LC}}\Rightarrow f^2=\dfrac{a}{C}\) (a là 1 hằng số nào đó, do bài này f chỉ phụ thuộc vào C)
\(\Rightarrow f_1^2=\dfrac{a}{C_1}\)
\(f_2^2=\dfrac{a}{C_2}\)
Cần tìm: \(\Rightarrow f^2=\dfrac{a}{C}=a.(\dfrac{1}{C_1}+\dfrac{1}{C_2})=f_1^2+f_2^2\)
\(\Rightarrow f=\sqrt{30^2+40^2}=50(Hz)\)
Khoảng thời gian liên tiếp giữa hai lần điện trường bằng năng lượng từ trường là \(\frac{T}{4}= \frac{\pi\sqrt{LC}}{2}.\).
Đáp án A
Nếu xem quá trình dao động của mạch LC trong một chu kì thì ta sẽ thấy luôn có sự biến thiên của cường độ dòng điện. I biến thiên dẫn tới từ trường B biến thiên từ thông biên thiên sinh ra một suất điện động tự cảm Hiện tượng tự cảm