Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: `x-1 >0 <=>x>1`
`(x^2-4x+3)/(sqrt(x-1))=sqrt(x-1)`
`<=>x^2-4x+3=x-1`
`<=>x^2-5x+4=0`
`<=>x^2-x-4x+4=0`
`<=>x(x-1)-4(x-1)=0`
`<=>(x-4)(x-1)=0`
`<=> [(x=4\ (TM)),(x=1\ (KTM)):}`
``
Vậy `S={4}`.
\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\dfrac{3}{2}x-3\)
\(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
Đặt \(t=\sqrt{2x^2-1}\left(t\ge0\right)\) \(\left(1\right)\) nên ta có phương trình:
\(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)
Ta có: \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=\left(x-3\right)^2\)
⇒ Phương trình có hai nghiệm phân biệt
\(t_1=\dfrac{2x-1}{2}\)
\(t_2=\dfrac{x+2}{2}\)
Thay lần lượt các giá trị của t vào (1) nên: \(x\in\left\{\dfrac{-1+\sqrt{6}}{2};\dfrac{2+\sqrt{60}}{7}\right\}\)
ĐKXĐ: `{(x+1>0),(x ne0):} <=> {(x> -1),(x ne 0):}`
`2/(sqrt(x+1))+1/(x sqrt(x+1)) =1/x`
`<=>(2x+1)/(x sqrt(x+1)) =1/x`
`<=>x(2x+1)=x sqrt(x+1)`
`<=>2x+1=sqrt(x+1)`
`=>(2x+1)^2=x+1`
`<=>4x^2+4x+1=x+1`
`<=>4x^2+3x=0`
`<=>x(4x+3)=0`
`<=>[(x=0\ (KTM)),(x=-3/4):}`
Thay `x=-3/4` vào PT ban đầu `=>` Không thỏa mãn.
Vậy phương trình vô nghiệm.
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)
binh rồi căn thì cứ chuyển bỏ dấu âm đi nó tương tự dấu giá trị tuyệt đối thôi
1) Thay x=16 vào A ta có:
A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)
A=\(\frac{16+4+1}{4+2}\)
A=\(\frac{21}{6}=\frac{7}{2}\)
\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)
\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)
\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)