Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\right)\)
\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-4-x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
\(x^2-8\sqrt{3x+7}=3x-32\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(3x+7-8\sqrt{3x+7}+16\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(4-\sqrt{3x+7}\right)^2=0\)
\(\Leftrightarrow x=3\)
\(\Leftrightarrow x\sqrt{2x-1}-4x+2=0\)0
\(\Leftrightarrow x\sqrt{2x-1}-2\left(2x-1\right)=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(x-2\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=0\\x-2\sqrt{2x-1}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\sqrt{2x-1}\left(1\right)\end{cases}}\)
+) giải phương trình (1) ta có
\(x=2\sqrt{2x-1}\)
\(\Leftrightarrow x^2=4.\left(2x-1\right)=0\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4-2\sqrt{3}\\x=4+2\sqrt{3}\end{cases}}\)
Vậy phương trình đã cho có 3 nghiệm là \(x=\frac{1}{2};x=4+2\sqrt{3};x=4-2\sqrt{3}\)
Đặt \(\sqrt{2x-1}=t\Rightarrow t^2=2x-1\Rightarrow x=\frac{t^2+1}{2}\)
Vậy pt đã cho \(\Leftrightarrow\frac{t^2+1}{2}\cdot t=2t^2\\ \Leftrightarrow t^3+t-4t^2=0\Rightarrow t\left(t^2-4t+1\right)=0\)
\(t=0\Rightarrow x=\frac{1}{2}\left(tm\right)\)
\(t^2-4t+1=0\Rightarrow\orbr{\begin{cases}t=2-\sqrt{3}\\t=2+\sqrt{3}\end{cases}}\)
\(t=2-\sqrt{3}\Rightarrow2x-1=7-4\sqrt{3}\Rightarrow2x=8-4\sqrt{3}\\ \Rightarrow x=4-2\sqrt{3}\)
\(t=2+\sqrt{3}\Rightarrow2x-1=7+4\sqrt{3}\Rightarrow2x=8+4\sqrt{3}\\ \Rightarrow x=4+2\sqrt{3}\)
Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông ta có:
$AH^2=BH.CH=4.6=24$
$\Rightarrow AH=\sqrt{24}=2\sqrt{6}$ (cm)
$AB^2=BH.BC=BH(BH+CH)=4(4+6)=40$
$\Rightarrow AB=\sqrt{40}=2\sqrt{10}$ (cm)
b.
$AC^2=CH.BC=6(6+4)=60$
$\Rightarrow AC=\sqrt{60}=2\sqrt{15}$ (cm)
$AM=AC:2=\sqrt{15}$ (cm)
$\tan \widehat{AMB}=\frac{AB}{AM}=\frac{2\sqrt{10}}{\sqrt{15}}=\frac{2\sqrt{6}}{3}$
$\Rightarrow \widehat{AMB}=59^0$
c.
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABM$:
$BK.BM=AB^2(1)$
Áp dụng hệ thức lượng với tam giác $ABC$:
$AB^2=BH.BC(2)$
Từ $(1); (2)\Rightarrow BK.BM=BH.BC$
a: góc OBA+góc OCA=90+90=180 độ
=>ABOC nội tiếp
b: góc OIE=góc OCE=90 độ
=>OICE là tứ giác nội tiếp
=>góc OEI=góc OCI
=>góc OEI=góc OCB
OBAC nội tiếp
=>góc OCB=góc OAB
=>góc OEI=góc OAB
=>góc OEI=góc OAI
=>OIAE nội tiếp
Gọi A,B lần lượt là hai mốc của bờ sông. Gọi điểm C là điểm nằm trên đường thước dây vuông góc với bờ sông tại A
=>AB vuông góc AC tại A
Theo đề, ta có: AC=16m \(\widehat{ABC}=75^0\)
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)
=>\(AB=\dfrac{AC}{tanB}=16:tan75\simeq4,3\left(m\right)\)
1) ĐKXĐ: \(x\ge0\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
3) ĐKXĐ: \(x\ge4\)
4) ĐKXĐ: \(x>16\)
5) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge0\end{matrix}\right.\)
6) ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge4\end{matrix}\right.\)
7) ĐKXĐ: \(\left[{}\begin{matrix}1\le x\\x< 3\end{matrix}\right.\)
8) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x>3\end{matrix}\right.\)
9) ĐKXĐ: \(x\in R\)
10) ĐKXĐ: \(x\in R\)
11) ĐKXĐ: \(x\in R\)
12) ĐKXĐ: \(x\in R\)
13) ĐKXĐ: \(x\in R\)
14) ĐKXĐ: \(x\in R\)
15) ĐKXĐ: \(x\in R\)
16) ĐKXĐ: \(x\ne-\dfrac{1}{2}\)
17) ĐKXĐ: \(x\ge7\)
18) ĐKXĐ: \(x\ge-5\)
Câu 10:
Gọi \(H\) là giao điểm của \(MO\) và \(AB\).
Xét tam giác \(MAO\) vuông tại \(A\) đường cao \(AH\):
\(\dfrac{1}{AH^2}=\dfrac{1}{MA^2}+\dfrac{1}{AO^2}\Leftrightarrow\dfrac{1}{\left(\dfrac{R\sqrt{2}}{2}\right)^2}=\dfrac{1}{MA^2}+\dfrac{1}{R^2}\Leftrightarrow MA=R\).
\(S_{MAOB}=S_{MAO}+S_{MBO}\)
\(=\dfrac{1}{2}.AO.MA+\dfrac{1}{2}.OB.MB\)
\(=\dfrac{1}{2}.R.R+\dfrac{1}{2}.R.R=R^2\)
Chọn C.
a: Xét tứ giác OBDA có \(\widehat{OBD}+\widehat{OAD}=90^0+90^0=180^0\)
nên OBDA là tứ giác nội tiếp
=>O,B,D,A cùng thuộc một đường tròn
b: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)CE tại A
Xét ΔBEC vuông tại B có BA là đường cao
nên \(CA\cdot CE=CB^2=\left(2R\right)^2=4R^2\)
c:
i: Xét (O) có
DA,DB là các tiếp tuyến
Do đó: DA=DB
=>D nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra OD là đường trung trực của AB
=>OD\(\perp\)AB tại K và K là trung điểm của AB
Xét tứ giác AKOI có \(\widehat{AKO}=\widehat{AIO}=\widehat{KAI}=90^0\)
nên AKOI là hình chữ nhật
=>OA=IK
=>IK=R
ii: ΔAHB vuông tại H
mà HK là đường trung tuyến
nên HK=KA=KB
=>K là tâm đường tròn ngoại tiếp ΔAHB
Gọi M là giao điểm của AO và KI
AKOI là hình chữ nhật
=>AO cắt KI tại trung điểm của mỗi đường
=>M là trung điểm chung của AO và KI
ΔAHO vuông tại H
mà HM là đường trung tuyến
nên \(HM=\dfrac{AO}{2}=\dfrac{KI}{2}\)
Xét ΔHKI có
HM là đường trung tuyến
HM=KI/2
Do đó: ΔHKI vuông tại H
=>HK\(\perp\)HI
Xét (K) có
HK là bán kính
HI\(\perp\)HK tại H
Do đó: HI là tiếp tuyến của (K)
=>HI là tiếp tuyến của đường tròn ngoại tiếp ΔHAB
iii: Vì \(\widehat{AHO}=\widehat{AKO}=\widehat{AIO}=90^0\)
nên A,H,K,O,I cùng thuộc đường tròn đường kính AO
trung bình cộng của 50 số lẻ liên tiếp là 50 . Số lớn nhất là?