K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7

Bạn ơi, vui lòng gửi lại ảnh nhé! Bạn chụp nghiêng quá, mình không nhìn được gì.

6 tháng 7

ôi mắt tôi 😣

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

S
9 tháng 9

\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = -2

vậy phương trình trên vô nghiệm

\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)

lấy (1) - (2) ta được:

12x = 81

⇒ x = 81 : 12 = 6,75

thay x = 6,75 vào (1) ta được:

\(6\cdot6,75-12y=27\)

40,5 - 12y = 27

12y = 40,5 - 27

12y = 13,5

y = 13,5 : 12 = 1,125

kết luận: (x; y) = (6,75; 1,125)

\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

14x = 15

x = 15 : 14 = \(\frac{15}{14}\) (3)

thay (3) vào (1) ta được:

\(10\cdot\frac{15}{14}+2y=6\)

\(\frac{75}{7}+2y=6\)

\(2y=6-\frac{75}{7}\)

\(2y=-\frac{33}{7}\)

\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)

kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)

\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)

lấy (1) + (2) ta được:

0x + 0y = 0

vậy hệ có vô số nghiệm

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)

=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)

=>Hệ vô nghiệm

b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)

=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)

=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)

c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)

=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)

d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)

=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)

=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

Bài 4:

a: Chiều cao của tòa nhà là:

\(25\cdot\tan36\) ≃18,2(m)

b: Khoảng cách từ chỗ anh ta đứng đến tòa nhà khi đó là:

18,2:tan32≃29,1(m)

Bài 3:

Kẻ BH⊥AC tại H

Xét ΔAHB vuông tại H có \(\sin A=\frac{BH}{AB}\)

=>\(BH=AB\cdot\sin A\)

Xét ΔABC có BH là đường cao

nên \(S_{ABC}=\frac12\cdot BH\cdot AC=\frac12\cdot AB\cdot AC\cdot\sin BAC\)

Bài 2:

a: \(A=\frac{\sin45^0\cdot cos45^0}{\cot60^0}=\frac{\frac{\sqrt2}{2}\cdot\frac{\sqrt2}{2}}{\tan30}=\frac12:\frac{\sqrt3}{3}=\frac12\cdot\frac{3}{\sqrt3}=\frac{3}{2\sqrt3}=\frac{\sqrt3}{2}\)

b: \(B=\frac{\sin70^0\cdot\tan40^0}{cos20^0\cdot\cot50^0}=\frac{\sin70^0\cdot\tan40^0}{\sin70^0\cdot\tan40^0}=1\)

Bài 1:

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=BC^2-AC^2=10^2-8^2=36=6^2\)

=>AB=6(cm)

Xét ΔABC vuông tại A có

\(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)

\(cosB=\frac{BA}{BC}=\frac{6}{10}=\frac35\)

\(\tan B=\frac{AC}{BA}=\frac86=\frac43\)

\(\cot B=\frac{AB}{AC}=\frac68=\frac34\)