Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(7^x+12^y=50\)
\(7^x\) luôn lẻ với mọi x là số tự nhiên , \(50\) là số chẵn mà \(7^x+12^y=50\)
=> \(12^y\) là số lẻ mà 12 là số chẵn
=> \(y=0\)
Với \(y=0\) => \(7^x+1=50\)
=> \(7^x=49=7^2\)
=> \(x=2\)
b) \(\frac{18n+3}{21n+7}\) có thể rút gọn
=> \(21n+7\ne0\)
=> \(21n\ne-7\)
=> \(-3n\ne0\)
=> \(n\ne0\)mà n là số tự nhiên
Vậy để phân số \(\frac{18n+3}{21n+7}\) có thể rút gọn được khi n là số tự nhiên khác 0

B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y
⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)
⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15
⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1
⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28

Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên

1, để B nguyên
=> n + 7 ⋮ 3n - 1
=> 3n + 21 ⋮ 3n - 1
=> 3n - 1 + 22 ⋮ 3n - 1
=> 22 ⋮ 3n - 1
2, tương tự thôi bạn
A = \(\frac{2x+7}{x+1}\)
A \(\in\) Z ⇔ (2\(x+1)\) ⋮ (\(x+1\))
[2.(\(x+1\)) + 5]⋮ (\(x+1\))
5 ⋮ (\(x+1)\)
(\(x+1\)) ∈ Ư(5) = {-5;-1; 1;5}
Lập bảng ta có:
\(x+1\)
-5
-1
1
5
\(x\)
-6
-2
0
4
\(x\) ∈ N
ktm
ktm
tm
tm
Theo bảng trên ta có: \(x\in\left\lbrace0;4\right\rbrace\)
Vậy: \(x\in\left\lbrace0;4\right\rbrace\)