K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(-8xy^2\cdot\left(-3x^2y^2\right)\)

\(=\left(-8\right)\cdot\left(-3\right)\cdot x\cdot x^2\cdot y^2\cdot y^2\)

\(=24x^3y^4\)

Hệ số là 24; Bậc là 3+4=7; biến là \(x^3;y^4\)

b: \(\frac14x^3\cdot\left(-\frac45xy^2\right)\)

\(=\left(-\frac14\cdot\frac45\right)\cdot\left(x^3\cdot x\right)\cdot y^2\)

\(=-\frac15x^4y^2\)

Hệ số là \(-\frac15\) ; Bậc là 4+2=6; biến là \(x^4;y^2\)

c: \(\left(-\frac25xy^3\right)^2=\left(-\frac25\right)^2\cdot x^2\cdot\left(y^3\right)^2=\frac{4}{25}x^2y^6\)

Hệ số là \(\frac{4}{25}\) ; bậc là 2+6=8; biến là \(x^2;y^6\)

d: \(-10y^2\cdot\left(2xy^2\right)^3\cdot\left(-x\right)^2\)

\(=-10y^2\cdot8x^3y^6\cdot x^2=-80x^5y^8\)

Hệ số là -80; Bậc là 5+8=13; biến là \(x^5;y^8\)

e: \(-4a^2\cdot x\cdot\left(-2bxy\right)^2\cdot5x^2y^3\)

\(=-4a^2\cdot x\cdot4b^2\cdot x^2y^2\cdot5x^2y^3\)

\(=\left(-4a^2\cdot4b^2\cdot5\right)\cdot x\cdot x^2\cdot x^2\cdot y^2\cdot y^3=-80a^2b^2\cdot x^5y^5\)

Hệ số là \(-80a^2b^2\) ; bậc là 5+5=10; biến là \(x^5;y^5\)

6 giờ trước (9:47)

Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

19 giờ trước (21:16)

a: (x+2)(2x-1)+(x-1)(3-2x)=3

=>\(2x^2-x+4x-2+3x-2x^2-3+2x=3\)

=>8x-5=3

=>8x=8

=>x=1

b: \(\left(2x-1\right)\left(2x+1\right)-\left(x+2\right)\left(4x-1\right)=15\)

=>\(4x^2-1-\left(4x^2-x+8x-2\right)=15\)

=>\(4x^2-1-\left(4x^2+7x-2\right)=15\)

=>\(4x^2-1-4x^2-7x+2=15\)

=>-7x+1=15

=>-7x=14

=>x=-2

19 giờ trước (21:26)

Bài 8:

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

Xét ΔABC có

AH,BD là các đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

c: Xét ΔABC có

G là trọng tâm

CG cắt AB tại E

Do đó: E là trung điểm của AB

Ta có: ΔAHB=ΔAHC

=>\(\hat{HAB}=\hat{HAC}\)

Ta có: \(AE=\frac{AB}{2}\) (E là trung điểm của AB)

\(AD=\frac{AC}{2}\) (D là trung điểm của AC)

mà AB=AC

nên AE=AD

Xét ΔAEH và ΔADH có

AE=AD

\(\hat{EAH}=\hat{DAH}\)

AH chung

Do đó: ΔAEH=ΔADH

=>HE=HD

=>ΔHED cân tại H

Bài 9:

1: Xét ΔBAE vuông tại A và ΔBHE vuông tai H có

BE chung

BA=BH

Do đó: ΔBAE=ΔBHE

2: ΔBAE=ΔBHE

=>EA=EH

=>ΔEAH cân tại E

3: Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: EA=EH

=>E nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BE là đường trung trực của AH

4: Xét ΔBKC có

KH,CA là các đường cao

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC

=>BE⊥KC

19 giờ trước (21:17)

a: \(D=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

=3

=>D không phụ thuộc vào biến

b: \(E=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

=-24

=>E không phụ thuộc vào biến

19 giờ trước (21:04)

Bài 1:

a: \(A\left(x\right)=5x^4-7x^2-3x-6x^2+11x-30\)

\(=5x^4-7x^2-6x^2-3x+11x-30\)

\(=5x^4-13x^2+8x-30\)

\(B=-11x^3+5x-10+5x^4-2+20x^3-34x\)

\(=5x^4+20x^3-11x^3+5x-34x-2-10\)

\(=5x^4+9x^3-29x-12\)

b: A(x)+B(x)

\(=5x^4-13x^2+8x-30+5x^4+9x^3-29x-12\)

\(=10x^4-4x^3-21x-42\)

A(x)-B(x)

\(=5x^4-13x^2+8x-30-5x^4-9x^3+29x+12\)

\(=-9x^3-13x^2+37x-18\)

Bài 2:

a: \(M=2x^2+5x-12\)

Bậc là 2

Hệ số cao nhất là 2

Hệ số tự do là -12

b: M+N

\(=2x^2+5x-12+x^2-8x-1=3x^2-3x-13\)

c: P(2x-3)=M

=>\(P=\frac{2x^2+5x-12}{2x-3}=\frac{2x^2-3x+8x-12}{2x-3}\)

\(=\frac{x\left(2x-3\right)+4\left(2x-3\right)}{2x-3}\)

=x+4

18 giờ trước (21:30)

F(x)⋮G(x)

=>\(2x^3-7x^2+12x+a\) ⋮x+2

=>\(2x^3+4x^2-11x^2-22x+34x+68+a-68\) ⋮x+2

=>a-68=0

=>a=68

19 giờ trước (21:05)

a: Thể tích của bể cá là: \(100\cdot60\cdot50=3000\cdot100=300000\left(\operatorname{cm}^3\right)\)

b: Thể tích nước ban đầu trong bể là:

\(100\cdot60\cdot30=6000\cdot30=180000\left(\operatorname{cm}^3\right)\)

\(30dm^3=30000\left(\operatorname{cm}^3\right)\)

Thể tích nước sau khi cho thêm hòn đá vào là:

\(180000+30000=210000\left(\operatorname{cm}^3\right)\)

Chiều cao của mực nước là:

210000:100:60=35(cm)

19 giờ trước (21:09)

a: \(5x\left(x-3\right)-x\left(5x+1\right)=16\)

=>\(5x^2-15x-5x^2-x=16\)

=>-16x=16

=>x=-1

b: \(4x\left(x-1\right)+x\left(3-4x\right)=5\)

=>\(4x^2-4x+3x-4x^2=5\)

=>-x=5

=>x=-5

c: \(5\left(x^2+4x-3\right)-x\left(5x+3\right)=19\)

=>\(5x^2+20x-15-5x^2-3x=19\)

=>17x=19+15=34

=>x=2