Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. \(9\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow9x+18-3x-6=0\)
\(\Leftrightarrow6x+12=0\)
\(\Leftrightarrow x=-2\)
e. \(\left(2x-1\right)^2-45=0\)
\(\Leftrightarrow4x^2-2x+1-45=0\)
\(\Leftrightarrow4x^2-2x-44=0\)
Đến đó tự giải tiếp nha!
c. \(2\left(2x-5\right)-3x=0\)
\(\Leftrightarrow4x-10-3x=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
g. \(2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\\\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^2\\\Leftrightarrow \left(x+1\right)^2-4\left(x-1\right)^2=0\\\Leftrightarrow \left(x+1\right)^2-\left(2x-2\right)^2=0\\\Leftrightarrow \left[\left(x+1\right)+\left(2x-2\right)\right]\left[\left(x+1\right)-\left(2x-2\right)\right] =0\\ \Leftrightarrow\left(x+1+2x-2\right)\left(x+1-2x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(3-x\right)=0\\\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{3};3\right\}\)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left[\left(2x+7\right)+\left(3x+6\right)\right]\left[\left(2x+7\right)-\left(3x+6\right)\right]=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+13=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-13}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-13}{5};1\right\}\)
\(4\left(2x+7\right)^2=9\left(x+3\right)^2\\\Leftrightarrow 4\left(2x+7\right)^2-9\left(x+3\right)=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\\Leftrightarrow \left[\left(4x+14\right)+\left(3x+9\right)\right]\left[\left(4x+14\right)-\left(3x+9\right)\right]=0\\\Leftrightarrow \left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\\Leftrightarrow \left(7x+23\right)\left(x+5\right)=0\\\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-23}{7};-5\right\}\)

a) \(\left(x+1\right)\left(2x-1\right)\left(-x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+1=0\\2x-1=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=\frac{1}{2}\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-1;\frac{1}{2};2\right\}\)
b) \(\left(2x-1\right)\left(3x+2\right)\left(4x-5\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}2x-1=0\\3x+2=0\\4x-5=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{1}{2}\\x=-\frac{2}{3}\\x=\frac{5}{4}\\x=7\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{1}{2};-\frac{2}{3};\frac{5}{4};7\right\}\)
c) \(x^2-6x+11=0\)
\(\Leftrightarrow x^2-6x+9+2=0\)
\(\Leftrightarrow\left(x-3\right)^2+2=0\) (vô lí)
Vậy phương trình vô nghiệm
d) \(\left(x^2+2x+3\right)\left(x^2-25\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1+2\right)\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left[\left(x+1\right)^2+2\right]\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+5=0\\x-5=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-5\\x=5\\x=-19\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\pm5;-19\right\}\)
a,b,d dễ mà bạn tự làm
c,x2-6x+11=0<=> x2-6x+9+2=0
<=>(x-3)2=-2(vô lý)
vậy pt vô nghiệm

2x3 + 3x2 + 6x + 5 = 02
<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0
<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0
<=> (2x2 + x + 5)(x + 1) = 0
<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)
<=> x = - 1
Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)
b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0
<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0
<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0
<=> (2x + 5)(2x3 + x2 - 3) = 0
<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0
<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0
<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0
Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)
\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)
Vậy ...

1. \(x^2\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x+1=0\Rightarrow x=-1\)
2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right).7x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
3.
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
4.
\(x^2-x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

a) 2x(x-3)+5(x-3)=0
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)

Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
\(3(2x-1)^2-6x(2x-3)=6\)
=> \(3(4x^2-4x+1)-(12x^2-18x)=6\)
=> \(12x^2-12x+3-12x^2+18x=6\)
=> \(6x+3=6\implies6x=3\implies x=\frac12\)
=>\(x=\frac12\)
\((2x-1)^2-(x+3)^2=0\)
=> \([(2x−1)−(x+3)]⋅[(2x−1)+(x+3)]=0\)
=> \((x−4)(3x+2)=0\)
=> \(x=4hoặcx=-\frac23\)
=> \(x=4;-\frac23\)
\((x-5)^2-x^2+25=0\)
=> \((x^2-10x+25)-x^2+25=0\)
=> \(−10x+50=0⟹x=5\)
=> \(x=5\)
\(4(2+3x)(3x-2)-(6x+1)^2=7\)
=> \(4(9x^2-4)-(36x^2+12x+1)=7\)
=> \(36x^2-16-36x^2-12x-1=7\)
=> \(−12x−17=7\)
=> \(−12x=24⟹x=−2\)
=> \(x=-2\)
✅ Phương trình 1:
\(3 \left(\right. 2 x - 1 \left.\right)^{2} - 6 x \left(\right. 2 x - 3 \left.\right) = 6\)
Bước 1: Khai triển các biểu thức
Bước 2: Thay vào phương trình
\(12 x^{2} - 12 x + 3 - \left(\right. 12 x^{2} - 18 x \left.\right) = 6\) \(12 x^{2} - 12 x + 3 - 12 x^{2} + 18 x = 6\) \(\left(\right. - 12 x + 18 x \left.\right) + 3 = 6 \Rightarrow 6 x + 3 = 6\) \(6 x = 3 \Rightarrow x = \boxed{\frac{1}{2}}\)
✅ Phương trình 2:
\(\left(\right. 2 x - 1 \left.\right)^{2} - \left(\right. x + 3 \left.\right)^{2} = 0\)
Dạng hiệu bình phương: \(A^{2} - B^{2} = \left(\right. A - B \left.\right) \left(\right. A + B \left.\right)\)
\(\left[\right. \left(\right. 2 x - 1 \left.\right) - \left(\right. x + 3 \left.\right) \left]\right. \cdot \left[\right. \left(\right. 2 x - 1 \left.\right) + \left(\right. x + 3 \left.\right) \left]\right. = 0\) \(\left(\right. x - 4 \left.\right) \left(\right. 3 x + 2 \left.\right) = 0\) \(\Rightarrow x = 4 \text{ho}ặ\text{c} x = - \frac{2}{3}\)
✅ Nghiệm: \(x = \boxed{4} \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; \boxed{- \frac{2}{3}}\)
✅ Phương trình 3:
\(\left(\right. x - 5 \left.\right)^{2} - x^{2} + 25 = 0\)
Khai triển:
\(x^{2} - 10 x + 25 - x^{2} + 25 = 0 \Rightarrow - 10 x + 50 = 0 \Rightarrow 10 x = 50 \Rightarrow x = \boxed{5}\)
✅ Phương trình 4:
\(4 \left(\right. 2 + 3 x \left.\right) \left(\right. 3 x - 2 \left.\right) - \left(\right. 6 x + 1 \left.\right)^{2} = 7\)
Bước 1: Khai triển từng phần
Khai triển \(4 \left(\right. 2 + 3 x \left.\right) \left(\right. 3 x - 2 \left.\right)\):
\(\left(\right. 2 + 3 x \left.\right) \left(\right. 3 x - 2 \left.\right) = 2 \left(\right. 3 x - 2 \left.\right) + 3 x \left(\right. 3 x - 2 \left.\right)\)
= \(6 x - 4 + 9 x^{2} - 6 x = 9 x^{2} - 4\)
→ Nhân với 4:
\(4 \left(\right. 9 x^{2} - 4 \left.\right) = 36 x^{2} - 16\)
Khai triển \(\left(\right. 6 x + 1 \left.\right)^{2} = 36 x^{2} + 12 x + 1\)
Bước 2: Thay vào phương trình
\(36 x^{2} - 16 - \left(\right. 36 x^{2} + 12 x + 1 \left.\right) = 7\) \(36 x^{2} - 16 - 36 x^{2} - 12 x - 1 = 7 \Rightarrow - 17 - 12 x = 7 \Rightarrow - 12 x = 24 \Rightarrow x = \boxed{- 2}\)
✅ Tóm tắt các nghiệm: