
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải:
a; m ⊥ d; n ⊥ d
⇒ m//n (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau)
b; Điểm B trên hình đâu em?

Giải:
a; \(\hat{x^{\prime}AB}\) = \(\hat{ABy}\) = 70\(^0\)(gt) (1)
\(\hat{x^{\prime}AB}\) và \(\hat{ABy}\) (hai góc so le trong) (2)
Kết hợp (1) và (2) ta có:
\(xx^{\prime}\) // yy'
b; \(xx^{\prime}\) // yy' (cmt) (a)
mm' ⊥ \(x\)\(x^{\prime}\)(gt) (b)
Từ (a) và (b) ta có:
mm'⊥ yy' (tính chất từ vuông góc đến song song)
⇒ \(\hat{yDm^{\prime}}\) = 90\(^0\)

em mình không biết làm bài này nên nhờ mọi người giải hộ mình nha

\(a.\frac47-\frac47:\frac{5}{14}=\frac47-\frac47\cdot\frac{14}{5}\)
\(=\frac47\cdot\left(1-\frac{14}{5}\right)=\frac47\cdot\left(-\frac95\right)=-\frac{36}{35}\)
\(b.\left(-\frac57\right)^2+8\cdot\left(0,5\right)^3+\left(-1\right)^{2025}=\frac{25}{49}+8\cdot0,125-1\)
\(=\frac{25}{49}+1-1=\frac{25}{49}\)
\(c.\left(1-\frac35\right)^2-\left(-\frac34\right)+\left(-\frac{13}{10}\right)=\left(\frac25\right)^2+\frac34-\frac{13}{10}\)
\(=\frac{4}{25}+\frac34-\frac{13}{10}=\frac{16}{100}+\frac{75}{100}-\frac{130}{100}=\frac{16+75-130}{100}=-\frac{39}{100}\)
\(d.\left(-\frac35+\frac49\right):\frac{7}{11}+\left(-\frac25+\frac59\right):\frac{7}{11}=-\frac{7}{45}\cdot\frac{11}{7}+\frac{7}{45}\cdot\frac{11}{7}\)
\(=\frac{11}{7}\cdot\left(\frac{7}{45}-\frac{7}{45}\right)=\frac{11}{7}\cdot0=0\)

Ta có:
\(\hat{Q_3}\) = \(\hat{Q_1}\)(đối đỉnh)
⇒ \(\hat{Q}_1\) = \(\hat{P_1}\) (tính chất bác cầu) (1)
Hai góc \(Q_1\) và \(P_1\) ở vị trí đồng vị (2)
Từ 1 và (2) ta có:
m//n (đpcm)

Bài 2:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
ta có: BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-125^0=55^0\)
Ta có: BD//Cz
=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)
=>\(\hat{DBC}=180^0-130^0=50^0\)
Ta có: tia BD nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)
=>\(\hat{ABC}=55^0+50^0=105^0\)
Bài 3:
Ax//yy'
=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)
=>\(\hat{yBA}=50^0\)
Cz//yy'
=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)
=>\(\hat{yBC}=40^0\)
Ta có: tia By nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)
Bài 4:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-110^0=70^0\)
ta có; tia BD nằm giữa hai tia BA và BC
=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)
=>\(\hat{DBC}=100^0-70^0=30^0\)
Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//Cz
Ta có: BD//Ax
BD//Cz
Do đó: Ax//Cz

a: a//b
=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)
mà \(\hat{A_1}=65^0\)
nên \(\hat{B_3}=65^0\)
b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)
=>\(\hat{B_2}=180^0-65^0=115^0\)
Giải:
a; \(\hat{A_1}\) = \(65^0\) (gt)
\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)
\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)
b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)
\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)
Vậy a; \(\hat{B}_3\) = 65\(^0\)
b; \(\hat{B_2}\) = 115\(^0\)
Bài 14:
\(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)
\(A\left(x\right)-B\left(x\right)=3x^4+7x^2+8x+2\)
Do đó: \(A\left(x\right)+B\left(x\right)+A\left(x\right)-B\left(x\right)=5x^4-6x^3-3x^2-4+3x^4+7x^2+8x+2\)
=>\(2\cdot A\left(x\right)=8x^4-6x^3+4x^2+8x-2\)
=>\(A\left(x\right)=4x^4-3x^3+2x^2+4x-1\)
Ta có: \(A\left(x\right)+B\left(x\right)=5x^4-6x^3-3x^2-4\)
=>\(B\left(x\right)=5x^4-6x^3-3x^2-4-4x^4+3x^3-2x^2-4x-1\)
=>\(B\left(x\right)=x^4-3x^3-5x^2-4x-5\)
Bài 13:
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)
Do đó: \(f\left(x\right)+g\left(x\right)+f\left(x\right)-g\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\)
=>\(2\cdot f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)
=>\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
=>\(g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-4x+7=x^4+3x^3-5x^2-4x+2\)