K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4

Bài 1:

Thực hiện phép tính:

a; (\(x^3\) + 2\(x^2\) - 5\(x\) - 7) + (\(x^3\) + 5\(x+11\))

= \(x^3\) + 2\(x^2\) - 5\(x\) - 7 + \(x^3\) + 5\(x+11\)

= (\(x^3+x^3\)) + (-5\(x\) + 5\(x\)) + 2\(x^2\) + (11 - 7)

= 2\(x^3\) + 0 + 2\(x^2\) + 4

= 2\(x^3\) + 2\(x^2\) + 4

S
16 tháng 8

1.1) a) \(\left|2x-5\right|=4\)

\(\Rightarrow\left[\begin{array}{l}2x-5=4\\ 2x-5=-4\end{array}\Rightarrow\left[\begin{array}{l}2x=9\\ 2x=1\end{array}\Rightarrow\left[\begin{array}{l}x=\frac92\\ x=\frac12\end{array}\right.\right.\right.\)

vậy \(x\in\left\lbrace\frac92;\frac12\right\rbrace\)

b)) \(\frac13-\left|\frac54-2x\right|=\frac14\)

\(\left|\frac54-2x\right|=\frac13-\frac14\)

\(\left|\frac54-2x\right|=\frac{1}{12}\)

\(\Rightarrow\left[\begin{array}{l}\frac54-2x=\frac{1}{12}\\ \frac54-2x=-\frac{1}{12}\end{array}\Rightarrow\left[\begin{array}{l}2x=\frac54-\frac{1}{12}\\ 2x=\frac54-\left(-\frac{1}{12}\right)\end{array}\right.\right.\)

\(\Rightarrow\left[\begin{array}{l}2x=\frac76\\ 2x=\frac43\end{array}\Rightarrow\left[\begin{array}{l}x=\frac{7}{12}\\ x=\frac23\end{array}\right.\right.\)

vậy \(x\in\left\lbrace\frac{7}{12};\frac23\right\rbrace\)

\(c.\frac12-\left|x+\frac15\right|=\frac13\)

\(\left|x+\frac15\right|=\frac12-\frac13\)

\(\left|x+\frac15\right|=\frac16\)

\(\Rightarrow\left[\begin{array}{l}x+\frac15=\frac16\\ x+\frac15=-\frac16\end{array}\Rightarrow\left[\begin{array}{l}x=\frac16-\frac15\\ x=-\frac16-\frac15\end{array}\right.\right.\Rightarrow\left[\begin{array}{l}x=-\frac{1}{30}\\ x=-\frac{11}{30}\end{array}\right.\)

vậy \(x\in\left\lbrace-\frac{1}{30};-\frac{11}{30}\right\rbrace\)

\(d.\frac34-\left|2x+1\right|=\frac78\)

\(\left|2x+1\right|=\frac34-\frac78\)

\(\left|2x+1\right|=-\frac18\)

\(\) ⇒ x thuộc rỗng

1.2) a) \(2\left|2x-3\right|=\frac12\)

\(\left|2x-3\right|=\frac12:2=\frac12\cdot\frac12=\frac14\)

\(\left[\begin{array}{l}2x-3=\frac14\\ 2x-3=-\frac14\end{array}\Rightarrow\left[\begin{array}{l}2x=\frac14+3\\ 2x=-\frac14+3\end{array}\right.\right.\)

\(\left[\begin{array}{l}2x=\frac{13}{4}\\ 2x=\frac{11}{4}\end{array}\Rightarrow\left[\begin{array}{l}x=\frac{13}{4}:2=\frac{13}{4}\cdot\frac12=\frac{13}{8}\\ x=\frac{11}{4}:2=\frac{11}{4}\cdot\frac12=\frac{11}{8}\end{array}\right.\right.\)

vậy: \(x\in\left\lbrace\frac{13}{8};\frac{11}{8}\right\rbrace\)

\(\frac{b)1}{3}-\left|\frac54-2x\right|=\frac14\)

\(\left|\frac54-2x\right|=\frac13-\frac14\)

\(\left|\frac54-2x\right|=\frac{1}{12}\)

\(\left[\begin{array}{l}\frac54-2x=\frac{1}{12}\\ \frac54-2x=-\frac{1}{12}\end{array}\Rightarrow\left[\begin{array}{l}2x=\frac54-\frac{1}{12}\\ 2x=\frac54-\left(-\frac{1}{12}\right)\end{array}\right.\right.\)

\(\left[\begin{array}{l}2x=\frac76\\ 2x=\frac43\end{array}\Rightarrow\left[\begin{array}{l}x=\frac76:2=\frac76\cdot\frac12=\frac{7}{12}\\ x=\frac43:2=\frac43\cdot\frac12=\frac23\end{array}\right.\right.\)

vậy \(x\in\left\lbrace\frac{7}{12};\frac23\right\rbrace\)

\(c.\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

\(\left|x+\frac{4}{15}\right|-3,75=-2,15\)

\(\left|x+\frac{4}{15}\right|=3,75-2,15\)

\(\left|x+\frac{4}{15}\right|=1,6\)

\(\left[\begin{array}{l}x+\frac{4}{15}=1,6\\ x+\frac{4}{15}=-1,6\end{array}\right.\Rightarrow\left[\begin{array}{l}x=1,6-\frac{4}{15}\\ x=-1,6-\frac{4}{15}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac43\\ x=-\frac{28}{15}\end{array}\right.\)

vậy \(x\in\left\lbrace\frac43;-\frac{28}{15}\right\rbrace\)

Bài 1.5:

a: Ta có: \(6,5-\frac94:\left|x+\frac13\right|=2\)

=>\(\frac94:\left|x+\frac13\right|=6,5-2=4,5=\frac92\)

=>\(\left|x+\frac13\right|=\frac94:\frac92=\frac24=\frac12\)

=>\(\left[\begin{array}{l}x+\frac13=\frac12\\ x+\frac13=-\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac12-\frac13=\frac16\\ x=-\frac12-\frac13=-\frac56\end{array}\right.\)

b: Ta có: \(\frac{11}{4}+\frac32:\left|4x-\frac15\right|=\frac72\)

=>\(\frac32:\left|4x-\frac15\right|=\frac72-\frac{11}{4}=\frac{14}{4}-\frac{11}{4}=\frac34\)

=>\(\left|4x-\frac15\right|=\frac32:\frac34=\frac42=2\)

=>\(\left[\begin{array}{l}4x-\frac15=2\\ 4x-\frac15=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}4x=2+\frac15=\frac{11}{5}\\ 4x=-2+\frac15=-\frac95\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{11}{20}\\ x=-\frac{9}{20}\end{array}\right.\)

c: Ta có: \(\frac{15}{4}-2,5:\left|\frac34x+\frac12\right|=3\)

=>\(2,5:\left|\frac34x+\frac12\right|=\frac{15}{4}-3=\frac34\)

=>\(\left|\frac34x+\frac12\right|=\frac52:\frac34=\frac52\cdot\frac43=\frac{20}{6}=\frac{10}{3}\)

=>\(\left[\begin{array}{l}\frac34x+\frac12=\frac{10}{3}\\ \frac34x+\frac12=-\frac{10}{3}\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac34x=\frac{10}{3}-\frac12=\frac{20}{6}-\frac36=\frac{17}{6}\\ \frac34x=-\frac{10}{3}-\frac12=-\frac{20}{6}-\frac36=-\frac{23}{6}\end{array}\right.\)

=>\(\left[\begin{array}{l}x=\frac{17}{6}:\frac34=\frac{17}{6}\cdot\frac43=\frac{68}{18}=\frac{34}{9}\\ x=-\frac{23}{6}:\frac34=-\frac{23}{6}\cdot\frac43=\frac{-92}{18}=-\frac{46}{9}\end{array}\right.\)

d: ta có: \(\frac{21}{5}+3:\left|\frac{x}{4}-\frac23\right|=6\)

=>\(3:\left|\frac{x}{4}-\frac23\right|=6-\frac{21}{5}=\frac{30}{5}-\frac{21}{5}=\frac95\)

=>\(\left|\frac{x}{4}-\frac23\right|=3:\frac95=3\cdot\frac59=\frac53\)

=>\(\left[\begin{array}{l}\frac{x}{4}-\frac23=\frac53\\ \frac{x}{4}-\frac23=-\frac53\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac{x}{4}=\frac53+\frac23=\frac73\\ \frac{x}{4}=-\frac53+\frac23=-\frac33=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac73\cdot4=\frac{28}{3}\\ x=-1\cdot4=-4\end{array}\right.\)

Bai 1.4:

a: \(\left|x+\frac14\right|-\frac34=5\%\)

=>\(\left|x+\frac14\right|=5\%+\frac34=\frac{1}{20}+\frac{15}{20}=\frac{16}{20}=\frac45\)

=>\(\left[\begin{array}{l}x+\frac14=\frac45\\ x+\frac14=-\frac45\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac45-\frac14=\frac{16}{20}-\frac{5}{20}=\frac{11}{20}\\ x=-\frac45-\frac14=-\frac{16}{20}-\frac{5}{20}=-\frac{21}{20}\end{array}\right.\)

b: \(2-\left|\frac34x-\frac14\right|=\left|-\frac54\right|\)

=>\(2-\left|\frac34x-\frac14\right|=\frac54\)

=>\(\left|\frac34x-\frac14\right|=2-\frac54=\frac34\)

=>\(\left[\begin{array}{l}\frac34x-\frac14=\frac34\\ \frac34x-\frac14=-\frac34\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac34x=\frac34+\frac14=\frac44=1\\ \frac34x=-\frac34+\frac14=-\frac24=-\frac12\end{array}\right.\)

=>\(\left[\begin{array}{l}x=1:\frac34=\frac43\\ x=-\frac12:\frac34=-\frac12\cdot\frac43=-\frac46=-\frac23\end{array}\right.\)

c: \(\frac32+\frac45\left|x-\frac34\right|=\frac74\)

=>\(\frac45\left|x-\frac34\right|=\frac74-\frac32=\frac74-\frac64=\frac14\)

=>\(\left|x-\frac34\right|=\frac14:\frac45=\frac14\cdot\frac54=\frac{5}{16}\)

=>\(\left[\begin{array}{l}x-\frac34=\frac{5}{16}\\ x-\frac34=-\frac{5}{16}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{5}{16}+\frac34=\frac{5}{16}+\frac{12}{16}=\frac{17}{16}\\ x=-\frac{5}{16}+\frac34=-\frac{5}{16}+\frac{12}{16}=\frac{7}{16}\end{array}\right.\)

d: \(4,5-\frac34\left|\frac12x+\frac53\right|=\frac56\)

=>\(\frac34\left|\frac12x+\frac53\right|=4,5-\frac56=\frac92-\frac56=\frac{27}{6}-\frac56=\frac{22}{6}=\frac{11}{3}\)

=>\(\left|\frac12x+\frac53\right|=\frac{11}{3}:\frac34=\frac{11}{3}\cdot\frac43=\frac{44}{9}\)

=>\(\left[\begin{array}{l}\frac12x+\frac53=\frac{44}{9}\\ \frac12x+\frac53=-\frac{44}{9}\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac12x=\frac{44}{9}-\frac53=\frac{44}{9}-\frac{15}{9}=\frac{29}{9}\\ \frac12x=-\frac{44}{9}-\frac53=-\frac{44}{9}-\frac{15}{9}=-\frac{64}{9}\end{array}\right.\)

=>\(\left[\begin{array}{l}x=\frac{29}{9}:\frac12=\frac{29}{9}\cdot2=\frac{58}{9}\\ x=-\frac{64}{9}:\frac12=-\frac{64}{9}\cdot2=-\frac{128}{9}\end{array}\right.\)

Bài 1.3:

a: \(2\left|3x-1\right|+1=5\)

=>2|3x-1|=4

=>|3x-1|=2

=>\(\left[\begin{array}{l}3x-1=2\\ 3x-1=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}3x=3\\ 3x=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=1\\ x=-\frac13\end{array}\right.\)

b: \(\left|\frac{x}{2}-1\right|=3\)

=>\(\left[\begin{array}{l}\frac{x}{2}-1=3\\ \frac{x}{2}-1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac{x}{2}=3+1=4\\ \frac{x}{2}=-3+1=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=8\\ x=-4\end{array}\right.\)

c: \(\left|-x+\frac25\right|+\frac12=3.5\)

=>\(\left|x-\frac25\right|=3.5-\frac12=\frac72-\frac12=\frac62=3\)

=>\(\left[\begin{array}{l}x-\frac25=3\\ x-\frac25=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3+\frac25=\frac{17}{5}\\ x=-3+\frac25=-\frac{15}{5}+\frac25=-\frac{13}{5}\end{array}\right.\)

d: \(\left|x-\frac13\right|=2\frac15\)

=>\(\left|x-\frac13\right|=\frac{11}{5}\)

=>\(\left[\begin{array}{l}x-\frac13=\frac{11}{5}\\ x-\frac13=-\frac{11}{5}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{11}{5}+\frac13=\frac{33}{15}+\frac{5}{15}=\frac{38}{15}\\ x=-\frac{11}{5}+\frac13=-\frac{33}{15}+\frac{5}{15}=-\frac{28}{15}\end{array}\right.\)

Bài 1.2:

a: \(2\left|2x-3\right|=\frac12\)

=>\(\left|2x-3\right|=\frac14\)

=>\(\left[\begin{array}{l}2x-3=\frac14\\ 2x-3=-\frac14\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=3+\frac14=\frac{13}{4}\\ 2x=3-\frac14=\frac{11}{4}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{13}{8}\\ x=\frac{11}{8}\end{array}\right.\)

b: \(7,5-3\left|5-2x\right|=-4.5\)

=>3|2x-5|=7,5+4,5=12

=>|2x-5|=4

=>\(\left[\begin{array}{l}2x-5=4\\ 2x-5=-4\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=9\\ 2x=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac92\\ x=\frac12\end{array}\right.\)

c: \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2.15\right|\)

=>\(\left|x+\frac{4}{15}\right|=-2,15+3,75=1,6=\frac85\)

=>\(\left[\begin{array}{l}x+\frac{4}{15}=\frac85\\ x+\frac{4}{15}=-\frac85\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac85-\frac{4}{15}=\frac{24}{15}-\frac{4}{15}=\frac{20}{15}=\frac43\\ x=-\frac85-\frac{4}{15}=-\frac{24}{15}-\frac{4}{15}=-\frac{28}{15}\end{array}\right.\)

Bài 1.1:

a: |2x-5|=4

=>

Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

a: Ta có: \(\hat{AOD}+\hat{BOD}=180^0\) (hai góc kề bù)

=>\(\hat{BOD}=180^0-97^0=83^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\hat{AOE}<\hat{AOD}\left(56^0<97^0\right)\)

nên tia OE nằm giữa hai tia OA và OD

=>\(\hat{AOE}+\hat{EOD}=\hat{AOD}\)

=>\(\hat{EOD}=97^0-56^0=41^0\)

Ta có: \(\hat{AOE}+\hat{EOC}+\hat{COB}=180^0\)

=>\(\hat{EOC}=180^0-56^0-42^0=82^0\)

b: Trên cùng một nửa mặt phẳng bờ chứa tia OE, ta có; \(\hat{EOD}<\hat{EOC}\left(41^0<82^0\right)\)

nên tia OD nằm giữa hai tia OE và OC

=>\(\hat{EOD}+\hat{DOC}=\hat{EOC}\)

=>\(\hat{DOC}=82^0-41^0=41^0\)

Ta có: tia OD nằm giữa hai tia OE và OC

\(\hat{DOE}=\hat{DOC}\left(=41^0\right)\)

Do đó: OD là phân giác của góc EOC

a: \(D=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

=3

=>D không phụ thuộc vào biến

b: \(E=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

=-24

=>E không phụ thuộc vào biến

Ta có: tia CD nằm giữa hai tia CF và CB

=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)

Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên ED//CF

Ta có: AB//CF

ED//CF

Do đó: AB//DE

20 tháng 8

cảm ơn !

Các cặp góc so le trong là: \(\hat{A_1};\hat{B_7}\) ; \(\hat{A_4};\hat{B_6}\)

Các cặp góc đồng vị là: \(\hat{A_2};\hat{B_6}\) ; \(\hat{A_1};\hat{B_5}\) ; \(\hat{A_3};\hat{B_7}\); \(\hat{A_4};\hat{B_8}\)

Các cặp góc trong cùng phía là: \(\hat{A_1};\hat{B_6}\) ; \(\hat{A_4};\hat{B_7}\)

Các góc ngoài cùng phía là: \(\hat{A_3};\hat{B_8}\) ; \(\hat{A_2};\hat{B_5}\)

Các góc so le ngoài là: \(\hat{A_2};\hat{B_8}\) ; \(\hat{A_3};\hat{B_5}\)

Ta có: \(x+120^0=180^0\) (hai góc kề bù)

=>\(x=180^0-120^0=60^0\)

Ta có: x=y (hai góc đối đỉnh)

\(x=60^0\)

nên \(y=60^0\)

Ta có: \(z+60^0=180^0\) (hai góc kề bù)

=>\(z=180^0-60^0=120^0\)

13 tháng 8

x = 60\(^0\) (hai góc đồng vị)

x = y = 60\(^0\) (hai góc đối đỉnh)

z = 120\(^0\) (slt)

t = 60\(^0\) (hai góc đối đỉnh)