
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ax//By
b: Gọi BM là tia đối của tia By
Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)
=>\(\hat{MBA}=180^0-135^0=45^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=75^0-45^0=30^0\)
Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên By//Cz

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn

Đặt \(A=1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2023}}+\frac{1}{2^{2024}}\)
\(2A=2+1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2022}}+\frac{1}{2^{2023}}\)
\(2A-A=2-\frac{1}{2^{2024}}\)
\(A=2-\frac{1}{2^{2024}}\)
Thay vào pt ban đầu:
\(\left(x+\frac12\right)^{2024}=2-\left(2-\frac{1}{2^{2024}}\right)\)
\(\left(x+\frac12\right)^{2024}=\frac{1}{2^{2024}}=\left(\frac12\right)^{2024}\)
\(x+\frac12=\frac12\) hoặc \(x+\frac12=-\frac12\)
\(x=0\) hoặc \(x=-1\)

Câu 7:
Giải:
Giá tiền của mỗi chiếc máy tính bán trong đợt đầu là:
8 x (100% + 30%) = 10,4(triệu đồng)
Tổng số tiền thu được khi bán 70 chiếc máy tính trong đợt đầu là:
10,4 x 70 = 728 (triệu đồng)
Giá của mỗi chiếc máy tính bán được trong đợt sau là:
10,4 x 65% = 6,76(triệu đồng)
Số tiền thu được khi bán hết số máy tính còn lại là:
6,76 x (100 - 70) = 202,8 (triệu đồng)
Tổng số tiền mà cửa hàng thu được khi bán hết 100 cái máy tính là:
728 + 202,8 = 930,8 (triệu đồng)
Tiền vốn của 100 cái máy tính là:
8 x 100 = 800 (triệu đồng)
Sau khi bán hết 100 máy tính thì người đó lãi và lãi số tiền là:
930,8 - 800 = 130,8 (triệu đồng)
Kết luận: Sau khi bán hết 100 máy tính người đó lãi và lãi số tiền là 130,8 triệu đồng
Bài 8:
a; Doanh thu năm 2019 là: 5,6 x \(\frac34\) = 4,2 (triệu usd)
b; Sau năm năm để lời 7,8 triệu usd thì năm 2020 phải thu được:
7,8 - (-1,8 + 5,6 - 3,6 + 4,2) = 3,4(triệu usd)
Kết luận: năm 2019 thu 4,2 triệu usd
năm 2020 thu 3,4 triệu usd

a: ||\(x:\left(-\frac23\right)+\frac12\) |+\(\frac56\) |\(\cdot\frac12=\frac34\)
=>||\(x:\left(-\frac23\right)+\frac12\) |\(+\frac56\) |\(=\frac34:\frac12=\frac32\)
mà \(\left|x:\left(-\frac23\right)+\frac12\right|+\frac56\ge\frac56\)
nên \(\left|x:\left(-\frac23\right)+\frac12\right|+\frac56=\frac32\)
=>\(\left|x:\left(-\frac23\right)+\frac12\right|=\frac32-\frac56=\frac96-\frac56=\frac46=\frac23\)
=>\(\left[\begin{array}{l}x:\left(-\frac23\right)+\frac12=\frac23\\ x:\left(-\frac23\right)+\frac12=-\frac23\end{array}\right.\Rightarrow\left[\begin{array}{l}x:\left(-\frac23\right)=\frac23-\frac12=\frac16\\ x:\left(-\frac23\right)=-\frac23-\frac12=-\frac46-\frac36=-\frac76\end{array}\right.\)
=>\(\left[\begin{array}{l}x=\frac16\cdot\left(-\frac23\right)=-\frac{2}{18}=-\frac19\\ x=-\frac76\cdot\left(-\frac23\right)=\frac{14}{18}=\frac79\end{array}\right.\)
a: \(\left|-\frac23x+\frac38\right|\cdot\left(-\frac85\right)=-\frac{8}{15}\)
=>\(\left|\frac23x-\frac38\right|=\frac{8}{15}:\frac85=\frac{5}{15}=\frac13\)
=>\(\left[\begin{array}{l}\frac23x-\frac38=\frac13\\ \frac23x-\frac38=-\frac13\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac23x=\frac38+\frac13=\frac{17}{24}\\ \frac23x=-\frac13+\frac38=\frac{1}{24}\end{array}\right.\)
=>\(\left[\begin{array}{l}x=\frac{17}{24}:\frac23=\frac{17}{24}\cdot\frac32=\frac{17}{16}\\ x=\frac{1}{24}:\frac23=\frac{1}{24}\cdot\frac32=\frac{3}{48}=\frac{1}{16}\end{array}\right.\)
\(a.x:\left(-\frac23\right)-\frac12\left|+\frac56\right|\cdot\frac12=\frac34\)
\(x\cdot\left(-\frac32\right)-\frac12+\frac{5}{12}=\frac34\)
\(x\cdot\left(-\frac32\right)=\frac34-\frac{5}{12}+\frac12\)
\(x\cdot\left(-\frac32\right)=\frac56\)
\(x=\frac56:\left(-\frac32\right)=\frac56\cdot\left(-\frac23\right)\)
\(x=-\frac59\)
\(b.\left(-\frac23\right)x+\frac38\cdot\left(-\frac85\right)=-\frac{8}{15}\)
\(\left(-\frac23\right)x-\frac35=-\frac{8}{15}\)
\(\left(-\frac23\right)x=-\frac{8}{15}+\frac35=\frac{1}{15}\)
\(x=\frac{1}{15}:\left(-\frac23\right)=\frac{1}{15}\cdot\left(-\frac32\right)\)
\(x=-\frac{1}{10}\)
a: Ta có: \(\hat{CAD}=\hat{ADE}\left(=55^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DE
b: ta có: \(\hat{AFB}=\hat{ADC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên BE//CD