Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{x}+\dfrac{2}{2\sqrt{xy}}\ge\dfrac{1}{x}+\dfrac{2}{x+y}=2\left(\dfrac{1}{2x}+\dfrac{1}{x+y}\right)\ge2.\dfrac{4}{2x+x+y}=\dfrac{8}{3x+y}\ge\dfrac{8}{4}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
Lời giải:
Từ ĐKĐB suy ra:
$-x^2+5xy+2y^2=3(x^2+y^2)$
$\Leftrightarrow 4x^2-5xy+y^2=0$
$\Leftrightarrow 4x(x-y)-y(x-y)=0$
$\Leftrightarrow (4x-y)(x-y)=0$
$\Rightarrow 4x=y$ hoặc $x=y$.
Nếu $4x=y$. Thay vô PT $(1)$ thì:
$x^2+(4x)^2=1\Rightarrow x=\pm \frac{1}{\sqrt{17}}$
$\Rightarrow x=\pm \frac{4}{\sqrt{17}}$ (tương ứng)
Trường hợp $x=y$ tương tự, ta tìm được $(x,y)=(\pm \frac{1}{\sqrt{2}}; \pm \frac{1}{\sqrt{2}})$
a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
Hai đường thẳng đã cho song song khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2=1\\3m+2\ne5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm1\\m\ne1\end{matrix}\right.\)
\(\Rightarrow m=-1\)
\(\frac{1}{\left|x-y\right|}.\sqrt{x^6\left(x-y\right)^2}=\frac{1}{\left|x-y\right|}.x^3.\sqrt{\left(x-y\right)^2}=\frac{1}{\left|x-y\right|}.x^3\left(x-y\right)=\frac{x^3\left(x-y\right)}{\left|x-y\right|}\)
a) ta có \(x+y=1\Rightarrow\left(x+y\right)^2=1\)
Áp dụng bđt cô si ta có \(2xy\le x^2+y^2\Rightarrow4xy\le\left(x+y\right)^2=1\Rightarrow2xy\le\frac{1}{2}\)
=> \(\frac{1}{2xy}\ge2\)
dấu = xảy ra <=> x=y=1/2
ĐKXĐ: x>=0 và 1-y>=0
=>x>=0 và y<=1
\(\sqrt{x\left(1-y\right)}=\sqrt{x}\cdot\sqrt{1-y}\) nó sẽ đúng khi cả hai biểu thức \(\sqrt{x};\sqrt{1-y}\) đều cùng xác định trên R
Do đó: Đẳng thức này sẽ đúng với \(\left\{{}\begin{matrix}x>=0\\y< =1\end{matrix}\right.\)
thanks nha =))