K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

khi a và b = 1

??

1 tháng 4 2022

đẳng thức a=b tương đương với a2=bkhi a=b và a+b khác 0
 

4 tháng 6 2020

Ta có: \(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

<=> \(4a^2+4b^2+4c^2+4d^2\ge4ab+4ac+4ad\)

<=> \(\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+a^2\ge0\)

<=> \(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\ge0\)luôn đúng 

Vậy \(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\) đúng 

Dấu "=" xảy ra <=> a = 0; a - 2b = 0; a - 2c = 0; a - 2d = 0 <=> a = b = c = d = 0 

20 tháng 10 2015

\(a+b+c=0\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\Rightarrow ab+bc+ac=-7\)

Suy ra \(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)

Lại có\(a^2+b^2+c^2=14\Rightarrow a^4+b^4+c^4=-2.49=-98\)

1 tháng 3 2020

b) \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow0\le3a^2-a^2+3b^2-b^2+3c^2-c^2-2ab-2bc-2ac\)

\(\Leftrightarrow0\le2a^2+2b^2+2c^2-2ab-2bc-2ac\)

\(\Leftrightarrow0\le\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

=> Đúng

Chúc bạn học tốt !!

1 tháng 3 2020

a ) \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow0\le2a^2-a^2+2b^2-b^2-2ab\)

\(\Leftrightarrow0\le a^2-2ab+b^2\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

\(\Rightarrow\) đúng

14 tháng 3 2020

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2\le0\)

\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc\le0\)

\(\Leftrightarrow-\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]\le0\)

\(\Leftrightarrow-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\le0\)( Luôn đúng )

\(\Rightarrowđpcm\)

27 tháng 1 2019

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Dấu " = " xảy ra=> a=b

Câu b tương tự