Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A => AC = AB = 14 cm
Vì E thuộc đường trung trực của AB => EA = EB
=> EA + EC = EB + EC = AC = 14 cm
chu vi tam giác BEC = 24 cm => EB + EC + BC = 24 cm
=> BC = 24 - ( EB + EC )
=> 24 - 14 = 10 cm
Vậy đoạn thẳng BC dài 10 cm .
Bạn vẽ hình của ▲ABC ra, vẽ trung trực AB cắt AC tại E.
Nhận xét ▲ABE có: AE = BE (do E thuộc đường trung trực của AB)
Chu vi ▲BEC là:
P▲BEC = BE + EC + BC
mà AE = BE
---> P▲BEC = AE + EC + BC = AC+ BC
---> BC = P▲BEC - AC = 24 - 14 = 10cm
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)
AB = 6; AC = 8
=> 6^2 + 8^2 = BC^2
=> BC^2 = 100
=> BC = 10 do BC > 0
Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A
=> AM = BC/2
=> AM = 10 : 2 = 5
b, xét tam giác BEC có : EM là trung tuyến
EM là đường cao
=> tam giác BEC cân tại E (định lí)