Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(VP=a^3+b^3+c^3-3bac\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VT\)
b: \(VT=\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)\)
\(=3a^2+15a+2ab+10b-a-5-2ab+4b\)
\(=3a^2+14a+14b-5\)
\(VP=\left(3a+5\right)\left(a+3\right)+2\left(7b-10\right)\)
\(=3a^2+9a+5a+15+14b-20\)
\(=3a^2+14a+14b-5\)
=>VT=VP
c: \(VT=a\left(b-x\right)+x\left(a+b\right)\)
\(=ab-ax+ax+bx\)
\(=ab+bx=b\left(a+x\right)=VP\)
d: \(VT=a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\)
\(=ab-ac-ab-bc+ca-cb\)
\(=-2bc\)
=VP
(x+1)(6x2+2x)+(x-1)(6x2+2x)
<=> (6x2+2x)(x+1+x-1)
<=> 2x(3x+1)2x
<=> 4x2(3x+1)
<=> x2=0
3x+1=0
<=> x=0
x= -1/3 (-1 phần 3)
\(a,\left\{{}\begin{matrix}\widehat{AKH}=\widehat{HMC}\left(=90\right)\\\widehat{AHK}=\widehat{MHC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AHK\sim\Delta CHM\left(g.g\right)\)
\(b,\left\{{}\begin{matrix}\widehat{AKC}=\widehat{ANB}\left(=90\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AKC\sim\Delta ANB\left(g.g\right)\\ \Rightarrow\dfrac{AN}{AK}=\dfrac{AB}{AC}\)
\(c,\left\{{}\begin{matrix}\widehat{HAN}+\widehat{AHN}=90;\widehat{BHM}+\widehat{HBM}=90\\\widehat{AHN}=\widehat{BHM}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\widehat{HAN}=\widehat{HBM}\)
\(\left\{{}\begin{matrix}\widehat{BMA}=\widehat{AMC}\left(=90\right)\\\widehat{HBM}=\widehat{HAN}\end{matrix}\right.\Rightarrow\Delta BHM\sim\Delta ACM\left(g.g\right)\Rightarrow\dfrac{MH}{CM}=\dfrac{MB}{MA}\Rightarrow MH\cdot MA=MB\cdot MC\)
\(=\dfrac{2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2-x-5}{x^2-x+1}\)
\(=2x^2+3x-2+\dfrac{-x-5}{x^2-x+1}\)
Vậy: Đa thức dư là -x-5
các câu sau khuyến khích bn tự làm
a,\(12x^2y-18xy^2-30y^3=6y\left(2x^2-3xy-5y^2\right)\)
b,\(16x^2\left(x-y\right)-10y\left(y-x\right)=16x^2\left(x-y\right)+10y\left(x-y\right)=\left(x-y\right)\left(16x^2+10y\right)=2\left(x-y\right)\left(8x^2+5y\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ c,x^3+9x^2+27x+27=x^3+3.3.x^2+3.3^2.x+3^3=\left(x+3\right)^3\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ d.8x^3+36x^2y+54xy^2+27y^3=\left(2x\right)^3+3.2^2.3x^2y+3.2.3^2xy^2+\left(3y\right)^3=\left(2x+3y\right)^3\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ e,\left(x-y\right)^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x+y+2\right)\\ \\ \\ \\ \\ g,16x^2-9\left(x+y\right)^2=\left(4x\right)^2-\left[3\left(x+y\right)\right]^2=\left(4x-3x-3y\right)\left(4x+3x+3y\right)=\left(x-3y\right)\left(7x+3y\right) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ h.5x^2-5xy-10x+10y=\left(5x^2-10x\right)-\left(5xy-10y\right)=5x\left(x-2\right)-5y\left(x-2\right)=\left(x-y\right)5\left(x-2\right)\)
đề bài là j thế