Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt thương của phép chia x4+ax2+1 cho x2+x+1 là (mx2 + nx + p)
<=>x4+ax2+1=(x2 +x+1)(mx2 +nx+p)
<=>x4+ax2+1= m4+nx3 + px2+ mx3+nx2 + px + mx^2 + nx + p
<=> x4+ax2+ 1= mx4+x3(m+n)+x2(p + n)+x(p + n)+p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì x4+ax2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x4+ ax2 + 1 chia hết cho x2 + 2x + 1
a)
vì \(BM=CM\)
\(\Rightarrow AM\) Là đương trung tuyến của tam giác \(ABC\)
mà theo gt ta có : \(AB=AC\Rightarrow\Delta ABC\) cân
theo định lý : trong 1 tam giác cân đường trung tuyến đồng thời là đường trung trực
\(\Rightarrow AM\perp NP\)
b) vì \(\Delta ABC\) đều \(\Rightarrow AB=AC=BC\) và \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
mà \(AP=PB;AN=NC;BM=MC\)
\(\Rightarrow AP=PB=BM=MC=AN=NC\)
xét \(\Delta PBM\) và \(\Delta NCM\) có:
BM=MC ( gt)
PB=NC ( cmt)
\(\widehat{B}=\widehat{C}\left(=60^0\right)\)
\(\Rightarrow\Delta PBM=\Delta NCM\) (C.G.C)
\(\Rightarrow PM=NM\) ( 2 cạnh tương ứng )
\(\Rightarrow\Delta MNP\) là tam giác cân tại M
a) Ta có : \(5^2=3^2+4^2\) hay \(BC^2=AB^2+AC^2\)
áp dụng đ/l Pytago đảo ta có ABC là tam giác vuông tại A
b) \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)
\(BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}\)
\(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}\)
Dễ dàng cm được HDAE là hình chữ nhật
=> HD // AC , HE // AB
Áp dụng đl Ta let : \(\frac{HD}{AC}=\frac{HB}{BC}\Rightarrow HD=\frac{AC.BH}{BC}=\frac{\frac{4.9}{5}}{5}=\frac{36}{5}\)
\(HE=\sqrt{AH^2-HD^2}=\frac{48}{25}\)
x 2 - x+ y2 -y - 2xy - 7
= ( x2 - 2xy + y2 ) - ( x + y ) -7
= ( x + y )2 - ( x + y ) -7
= ( x + y ) [ ( x + y ) -7]
= ( x + y ) ( x + y - 7 )