K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔABH và ΔACK, ta có:

AB = AC (gt)

∠(AHB) =∠(AKC) =90o

BH=CK ( chứng minh trên)

Suy ra: ΔABH= ΔACK (cạnh huyền– cạnh góc vuông)

28 tháng 3 2022

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: \(\widehat{D}=\widehat{E}\)

Xét ΔHDB vuông tại H và ΔKEC vuông tại K có 

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHDB=ΔKEC

Suy ra: BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

BH=CK

Do đó: ΔAHB=ΔAKC

  Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Kẻ BH vuông góc với AD,CK vuông góc với AE{H thuộc AD,K thuộc AE}.Hai đường thẳng HB và KC cắt nhau tại O.Chứng minh rằng                                      a.tam giác ABD=tam giác ACE                                                                  ...
Đọc tiếp

 

 

Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Kẻ BH vuông góc với AD,CK vuông góc với AE{H thuộc AD,K thuộc AE}.Hai đường thẳng HB và KC cắt nhau tại O.Chứng minh rằng                                      a.tam giác ABD=tam giác ACE                                                                                                       b.tam giác ADE cân                                                                                                                c.tam giác DHB=tam giác EKC                                                                                                  d.tam giác BOC cân                                                                                                                    e.OA là tia phân giác của góc BOC

 

 

0
10 tháng 3 2021

a) Do ΔABC cân tại A

=> AB = AC; góc ABC=góc ACB

Lại có: góc ABC+ góc ABD = 180o (kề bù)

góc ACB + góc ACE = 180o (kề bù)

=> góc ABD = góc ACE

Xét ΔADB và ΔAEC có:

góc BAD = góc CAE (gt)

AB = AC (cmt)

góc ABD = góc ACE (cmt)

=> ΔADB = ΔAEC (g.c.g)

=> BD = CE (2 cạnh tg ứng) đpcm

b) Vì ΔADB = ΔAEC (câu a)

=> góc ADB = góc AEC (2 góc t/ư)

hay góc HDB = góc KEC

Xét ΔBHD vuông tại H và ΔCKE vuông tại E có:

BD = CE (câu a)

góc HDB = góc KEC(cmt)

=> ΔBHD = ΔCKE (ch - gn)

=> BH = CK (2 cạnh tg ứng) (đpcm)

a: Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

DO đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE
\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC

BH=CK

Do đó: ΔABH=ΔACK

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

c) Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

DB=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(hai góc ở đáy của ΔADE cân tại A)

Do đó: ΔDHB=ΔEKC(cạnh huyền-góc nhọn)

d) Ta có: ΔDHB=ΔEKC(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

e) Xét ΔABO và ΔACO có

AB=AC(ΔABC cân tại A)

AO chung

BO=CO(ΔOBC cân tại O)

Do đó: ΔABO=ΔACO(c-c-c)

nên \(\widehat{BOA}=\widehat{COA}\)(hai góc tương ứng)

mà tia OA nằm giữa hai tia OB,OC

nên OA là tia phân giác của \(\widehat{BOC}\)(đpcm)

3 tháng 2 2021

cảm ơn bạn rất nhiếubatngo