Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)
\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
\(c,\)Tại x = 6, ta có :
\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)
Vậy tại x = 6 thì B = 3
\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)
Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)
Th2: \(x+3=-1\Rightarrow x=-4\)
Th3 : \(x+3=3\Rightarrow x=0\)
TH4 \(x+3=-3\Rightarrow x=-6\)
Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)
a)Để B đc xác định thì :x+3 khác 0
x-3 khác 0
x^2-9 khác 0
=>x khác -3
x khác 3
b) Kết Qủa BT B là:3/x+3
\(Gọi \) \(f ( x ) = x^4 + ax + b\)
\(g( x ) = x^2 - 4\)
\(Cho \) \(g ( x ) = 0\)
\(\Leftrightarrow\)\(x^2 - 4 = 0\)
\(\Leftrightarrow\)\(( x - 2 )( x + 2 )=0\)
\(\Rightarrow\)\(x = 2 \) \(hoặc\) \(x = - 2\)
\(Ta \) \(có : \)
\(f ( 2 ) = 2^4 + a . 2 + b\)
\(\Rightarrow\)\(f ( 2 ) = 16 + 2a + b\) \(( 1 )\)
\(f ( - 2 ) = ( - 2 )^4 + a . ( - 2 ) + b\)
\(\Rightarrow\)\(f ( - 2 ) = 16 - 2a + b \) \(( 2 )\)
\(Lấy \) \(( 1 ) + ( 2 )\) \(ta \) \(được : \)\(32 + 2b = 0\)
\(\Rightarrow\)\(2b = - 32\)
\(\Rightarrow\)\(b = - 16\)
\(Thay \) \(b = - 16 \) \(vào \) \(( 1 ) \) \(ta \) \(được :\)
\(16 + 2a -16 = 0\)
\(\Rightarrow\)\(2a = 0\)
\(\Rightarrow\)\(a = 0\)
\(Vậy : a = 0 \) \(và\) \(b = - 16 \) \(thì \) \(x^4 + ax + b \)
\(⋮\)\(x ^2 -4\)
Đa thức \(x^2-4\)có nghiệm\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
Để \(x^4+ax+b⋮x^2-4\)thì
\(f\left(2\right)=f\left(-2\right)=0\)(theo Bezout)
Ta có: \(f\left(2\right)=2^4+2a+b=0\Leftrightarrow2a+b=-16\)(1)
\(f\left(-2\right)=\left(-2\right)^4-2a+b=0\Leftrightarrow-2a+b=-16\)(2)
Lấy (1) + (2), ta được: 2b =- 32\(\Rightarrow b=-16\)
Lúc đó \(a=\frac{-16+16}{2}=0\)
Vậy a = 0; b = -16
\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)