\(243^5-405^4+270^3-90^2+15x-1\) là khai triển của nhị thức nào dưới đây ?...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

a) Theo dòng 5 của tam giác Pascal, ta có:

(a + 2b)5= a5 + 5a4 (2b) + 10a3(2b)2 + 10a2 (2b)3 + 5a (2b)4 + (2b)5

= a5 + 10a4b + 40a3b2 + 80a2b3 + 80ab4 + 32b5

b) Theo dòng 6 của tam giác Pascal, ta có:

(a - √2)6 = [a + (-√2)]6 = a6 + 6a5 (-√2) + 15a4 (-√2)2 + 20a3 (-√2)3 + 15a2 (-√2)4 + 6a(-√2)5 + (-√2)6.

= a6 - 6√2a5 + 30a4 - 40√2a3 + 60a2 - 24√2a + 8.

c) Theo công thức nhị thức Niu – Tơn, ta có:

(x - )13= [x + (- )]13 = Ck13 . x13 – k . (-)k = Ck13 . (-1)k . x13 – 2k

Nhận xét: Trong trường hợp số mũ n khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

NV
21 tháng 4 2020

\(x^{\alpha}\) với \(\alpha\) bất kì thuộc R bạn

nguyen thi khanh nguyen

NV
21 tháng 4 2020

a/ \(y=2x^3-5\sqrt{x}+5x^{-3}\Rightarrow y'=6x^2-\frac{5}{2\sqrt{x}}-15x^{-4}=6x^2-\frac{5}{2\sqrt{x}}-\frac{15}{x^4}\)

\(\Rightarrow y'\left(4\right)=\frac{24241}{256}\)

b/ \(y=3x^3-x^2+6x-2\Rightarrow y'=9x^2-2x+6\)

\(\Rightarrow y'\left(4\right)=142\)

c/ \(y'=\frac{-11}{\left(3x-1\right)^2}\Rightarrow y'\left(4\right)=\frac{-11}{11^2}=-\frac{1}{11}\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)

d.

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)

\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

b.

\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)

NV
13 tháng 5 2020

\(L_1=\lim\limits_{x\rightarrow0}\frac{x\left(x^2+3x-2\right)}{x\left(x^4+4\right)}=\lim\limits_{x\rightarrow0}\frac{x^2+3x-2}{x^4+4}=-\frac{1}{2}\)

\(L_2=\lim\limits_{x\rightarrow+\infty}\frac{1-\frac{3}{x^2}+\frac{2}{x^3}}{\left(\frac{4}{x}-2\right)^3}=\frac{1}{\left(-2\right)^3}=-\frac{1}{8}\)

\(L_3=\lim\limits_{x\rightarrow-1}\frac{\left(2x+1\right)\left(x+1\right)}{x\left(x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{2x+1}{x}=1\)

\(L_4=\lim\limits_{x\rightarrow2}\frac{x^2-4x+1}{4-x^2}=\frac{1}{0}=+\infty\)

\(L_5=\lim\limits_{x\rightarrow3}\frac{\sqrt{x+1}-2}{x-2}=\frac{0}{1}=0\)

\(L_6=\lim\limits_{x\rightarrow1}\frac{x+3-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{-\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{-\left(x+2\right)}{\left(x+1\right)\left(\sqrt{x+3}+x+1\right)}=\frac{-3}{2.4}=-\frac{3}{8}\)

\(L_7=\lim\limits_{x\rightarrow+\infty}\frac{x^2+x+1-\left(x-1\right)^2}{\sqrt{x^2+x+1}+x-1}\lim\limits_{x\rightarrow+\infty}\frac{3x}{\sqrt{x^2+x+1}+x-1}=\lim\limits_{x\rightarrow+\infty}\frac{3}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1-\frac{1}{x}}=\frac{3}{2}\)

\(L_8=\lim\limits_{x\rightarrow-\infty}\frac{x^2+x+1-\left(3x-2\right)^2}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8x^2+13x-3}{\sqrt{x^2+x+1}+3x-2}=\lim\limits_{x\rightarrow-\infty}\frac{-8+\frac{13}{x}-\frac{3}{x^2}}{-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+3-\frac{2}{x}}=\frac{-8}{-1+3}=-4\)

13 tháng 7 2020

\(\text{a) }cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}=cos\frac{\pi}{3}\\\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+m2\pi\\x=n2\pi\end{matrix}\right.\)

\(\text{b) }pt\Leftrightarrow cos\left(3x-\frac{\pi}{3}\right)=\frac{1}{2}=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\3x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{9}+\frac{m2\pi}{3}\\x=\frac{n2\pi}{3}\end{matrix}\right.\)

\(\text{c) }pt\Leftrightarrow cos\left(4x+\frac{\pi}{5}\right)=-\frac{\sqrt{3}}{2}=cos\frac{5\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{5}=\frac{5\pi}{6}+m2\pi\\4x+\frac{\pi}{5}=-\frac{5\pi}{6}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{19\pi}{120}+\frac{m\pi}{2}\\x=-\frac{31\pi}{120}+\frac{n\pi}{2}\end{matrix}\right.\)

\(\text{d) }ĐKXĐ:cosx\ne-\frac{1}{2}\Leftrightarrow x\ne\pm\frac{2\pi}{3}+k2\pi\)

\(pt\Leftrightarrow2\left(4cosx+3\right)=5\left(2cosx+1\right)\\ \Leftrightarrow cosx=\frac{1}{2}=cos\frac{\pi}{3}\\ \Leftrightarrow x=\pm\frac{\pi}{3}+m2\pi\)

O pi/3 2pi/3 -pi/3 -2pi/3

Vậy \(x=\pm\frac{\pi}{3}+m2\pi\)

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)

\(b=\frac{1-5+1}{0}=\frac{-3}{0}=-\infty\)

\(c=\lim\limits_{x\rightarrow1}\frac{x\left(1+2x\right)\left(1+3x\right)+2x\left(1+3x\right)+3x}{x}=\lim\limits_{x\rightarrow1}\left[\left(1+2x\right)\left(1+3x\right)+2\left(1+3x\right)+3\right]=1+2+3=6\)

\(d=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-1}{5x^4+2x}=\frac{4}{0}=+\infty\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)

\(b=\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)

\(c=\lim\limits_{x\rightarrow0}\frac{x+x^2+...+x^n-n}{x-1}=\frac{-n}{-1}=n\)

\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)=x\left(1+2x\right)...\left(1+nx\right)+\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)\)

\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+\left(1+3x\right)...\left(1+nx\right)\)

\(=...\)

\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx+1\)

\(\Rightarrow\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\frac{x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx}{x}\)

\(=\lim\limits_{x\rightarrow0}\left[\left(1+2x\right)...\left(1+nx\right)+2\left(1+3x\right)...\left(1+nx\right)+...+n\right]\)

\(=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

NV
3 tháng 4 2020

Bài 1:

a. \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\frac{5x^4}{3x^2}=\frac{5}{3}\)

b. \(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)

c. \(\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)x}{x}+\lim\limits_{x\rightarrow0}\frac{\left(1+3x\right)2x}{x}+\lim\limits_{x\rightarrow0}\frac{3x+1-1}{x}=1+2+3=6\)

d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+5x\right)}{x^5+x^2}=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-5}{5x^4+2x}\)

\(=\lim\limits_{x\rightarrow0}\frac{20\left(1+x\right)^3}{20x^3+2}=\frac{20}{2}=10\)

Bài 2:

\(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)

\(\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)