K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 10 2020

Gọi M là 1 điểm bất kì thuộc d \(\Rightarrow2x_M-y_M+1=0\) (1)

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_M=x_{M'}-1\\y_M=y_{M'}+2\end{matrix}\right.\) thế vào (1)

\(\Rightarrow2\left(x_{M'}-1\right)-\left(y_{M'}+2\right)+1=0\)

\(\Leftrightarrow2x_{M'}-y_{M'}-3=0\)

Vậy pt d' là: \(2x-y-3=0\)

28 tháng 7 2020

a, Vì là phép tịnh tiến nên d sog sog vs d phẩy. (1)

Xét (d): Cho x= 2=> y= 0,5 => x(d phẩy)= 1; y(d phẩy)= 2,5 (2)

Từ (1) và (2) suy ra: 1+ 2* 2,5- c= 0 tương đương c= 6 tương đương d phẩy: x+ 2y- 6= 0

11 tháng 10 2020

* d' có dạng : x + 3y + C = 0

A(2;0) thuộc d => A'(7;3) thuộc d'

=> 7 + 3 x 3 +C = 0 => C = -16

=> d' : x + 3y - 16 = 0

* (C) : \(\left(x-\frac{3}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=\frac{5}{2}\) có tâm \(I\left(\frac{3}{2};-\frac{1}{2}\right)\)

=> (C') có tâm \(I'\left(\frac{13}{2};\frac{5}{2}\right)\)

(C') : \(\left(x-\frac{13}{2}\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{5}{2}\)

NV
23 tháng 6 2021

Không hiểu câu hỏi số 2 của em

Ở đây có 2 pt đường tròn khác nhau, vậy (C) là cái nào trong 2 cái trên? Hoặc đề yêu cầu tìm ảnh của cả 2 đường tròn?

23 tháng 6 2021

Dạ, đề yêu cầu tìm ảnh của cả 2 đường tròn ạ.

25 tháng 12 2019
https://i.imgur.com/RsVQ7aK.jpg
NV
18 tháng 10 2020

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

NV
18 tháng 10 2020

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)