Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Sau 1 chu kì bán rã:
Sau 2 chu kì bán rã:
Sau 3 chu kì bán rã:
…
Tổng quát : Sau n chu kì bán rã :
c. Chất phóng xạ không còn độc hại nữa khi khối lượng chất phóng xạ còn lại < 10-6 g = 10-9 kg
Vậy sau 30 chu kì = 30.24000 = 720 000 năm thì 1kg chất phóng xạ này không còn độc hại nữa.
a) Nhận xét: u1 = ; u2 = ; u3 = ; ... un = .
Điều này chứng minh đơn giản bằng quy nạp.
b) lim un = lim ()n= 0 = vì lim qn = 0 nếu |q| < 1.
c) Đổi 10-6 g = . kg = kg.
Muốn có un = < , ta cần chọn n0 sao cho 2n0 > 109. Chẳng hạn, với n0 = 36, thì
236 = (24)9 = 16 9 > 109. Nói cách khác, sau chu kì thứ 36 (nghĩa là sau 36.24000 = 864 000 (năm), chúng ta không còn lo lắng về sự độc hại của khối lượng chất phóng xạ còn lại.
Đáp án D
Xem lô đất có 4 vị trí gồm 2 vị trí 1 nền,1 vị trí 2 nền và 1 vị trí 3 nền
Bước 1: nhóm thứ nhất chọn 1 vị trí cho 2 nền có 4 cách và mỗi cách có 2!=2 cách chọn nền cho mỗi người.
Suy ra có 4.2=8 cách chọn nền
Bước 2 nhóm thứ hai chọn 1 trong 3 vị trí còn lại cho 3 nền có 3 cách và mỗi cách có 3!=6 cách chọn nền cho mỗi người.
Suy ra có 3.6=18 cách chọn nền
Vậy có 8.18=144 cách chọn nền cho mỗi người
Xem lô đất có 4 vị trí gồm 2 vị trí 1 nền, 1 vị trí 2 nền và 1 vị trí 3 nền.
Bước 1: nhóm thứ nhất chọn 1 vị trí cho 2 nền có 4 cách và mỗi cách có 2!=2 cách chọn nền cho mỗi người. Suy ra có 4.2 = 8 cách chọn nền.
Bước 2: nhóm thứ hai chọn 1 trong 3 vị trí còn lại cho 3 nền có 3 cách và mỗi cách có 3!= 6 cách chọn nền cho mỗi người.
Suy ra có 3.6=18 cách chọn nền.
Vậy có 8.18=144 cách chọn nền cho mỗi người
Chọn A.
a) Theo đề bài, ta thấy \(\left( {{u_k}} \right)\) là cấp số nhân với số hạng đầu \({u_1} = \frac{1}{2}\), công bội \(q = \frac{1}{2}\).
Vậy \({u_k} = {u_1}.{q^{k - 1}} = \frac{1}{2}.{\left( {\frac{1}{2}} \right)^{k - 1}} = {\left( {\frac{1}{2}} \right)^k} = \frac{1}{{{2^k}}}\).
b) \(\left( {{u_n}} \right)\) là cấp số nhân với số hạng đầu \({u_1} = \frac{1}{2}\), công bội \(q = \frac{1}{2}\).
Vậy \({S_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = \frac{1}{2}.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = \frac{1}{2}.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{\frac{1}{2}}} = 1 - {\left( {\frac{1}{2}} \right)^n}\).
c) \(\lim {S_n} = \lim \left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right) = \lim 1 - \lim {\left( {\frac{1}{2}} \right)^n}\).
\(\lim 1 = 1\) vì 1 là hằng số.
\(\left| {\frac{1}{2}} \right| = \frac{1}{2} < 1\) nên \(\lim {\left( {\frac{1}{2}} \right)^n} = 0\)
Vậy \(\lim {S_n} = \lim 1 - \lim {\left( {\frac{1}{2}} \right)^n} = 1 - 0 = 1\)
Giới hạn này bằng diện tích của hình vuông ban đầu.
a, Khối lượng polonium-210 còn lại sau 2 năm là:
\(M\left(730\right)=100\cdot\left(\dfrac{1}{2}\right)^{\dfrac{730}{138}}\approx1,92\left(g\right)\)
b, Ta có:
\(M\left(t\right)=40\\ \Leftrightarrow40=100\cdot\left(\dfrac{1}{2}\right)^{\dfrac{t}{138}}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{\dfrac{t}{138}}=\dfrac{4}{10}\\ \Leftrightarrow\dfrac{t}{138}=log_{\dfrac{1}{2}}\left(\dfrac{4}{10}\right)\\ \Leftrightarrow t=138\cdot log_{\dfrac{1}{2}}\left(\dfrac{4}{10}\right)\approx182,43\)
Vậy sau 183,43 ngày thì còn lại 40g polonium-210.
a) Sau một chu kì bán rã \({u_1} = 1.\frac{1}{2} = \frac{1}{2}\left( {kg} \right)\)
Sau hai chu kì bán rã \({u_2} = \frac{1}{2}.{u_1} = \frac{1}{{{2^2}}}\left( {kg} \right)\)
…
Vậy sau n chu kì bán rã \({u_n} = \frac{1}{{{2^n}}}\)
b) \(\lim {u_n} = \lim \frac{1}{{{2^n}}} = \lim {\left( {\frac{1}{2}} \right)^n} = 0\)
c) Đổi \({10^{ - 6}}g = {10^{ - 9}}kg\)
Vì chất phóng xạ này sẽ không độc hại nữa nếu khối lượng chất phóng xạ còn lại bé hơn \({10^{ - 6}}\) g nên ta có
\({u_n} < {10^{ - 9}} \Leftrightarrow \frac{1}{{{2^n}}} < {10^{ - 9}} \Leftrightarrow {2^n} > {10^9} \Leftrightarrow n > {\log _2}{10^9} \approx 29,9\)
Vậy sau 30 chu kì là 30.24 000 = 720 000 năm thì khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người.
Chọn đáp án C
Hình trụ nội tiếp nửa mặt cầu, nên theo giả thiết đường tròn đáy trên có tâm O’ là hình chiếu của O xuống mặt đáy (O’). Suy ra hình trụ và nửa mặt cầu cùng chung trục đối xứng và tâm của đáy dưới hình trụ trùng với tâm O của nửa mặt cầu.
Thể tích khối trụ là
Đáp án: 127(kg)127(��)
Giải thích các bước giải:
Gọi số xoài lúc đầu là x,x>0�,�>0
→→Người thứ nhất mua 12x+12=12(x+1)12�+12=12(�+1)
→→Số xoài còn lại là x−(12x+12)=12x−12�−(12�+12)=12�−12
Người thứ hai mua
12(12x−12)+12=14(x+1)=122(x+1)12(12�−12)+12=14(�+1)=122(�+1)
→→Số xoài còn lại là
12x−12−14(x+1)=x−3412�−12−14(�+1)=�−34
Người thứ ba mua:
12⋅x−34+12=18(x+1)=123(x+1)12⋅�−34+12=18(�+1)=123(�+1)
Tương tự đến người thứ 77 mua:
127(x+1)127(�+1)
Mà người đó bán đến người thứ bảy thì hết
→12(x+1)+122(x+1)+...+127(x+1)=x→12(�+1)+122(�+1)+...+127(�+1)=�
→(x+1)(12+122+...+127)=x→(�+1)(12+122+...+127)=�
→(x+1)⋅127128=x→(�+1)⋅127128=�
→x=127