K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sao anh không thấy đề cụ thể ta!

14 tháng 3 2021

Nguyễn Trần Thành Đạt đề đó mà anh?

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x}+\dfrac{2}{x^2}}}{1-\dfrac{1}{x}}=\dfrac{\sqrt{1+0+0}}{1-0}\)

\(=\dfrac{1}{1}\)

=1

b: \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-x-4x^2}{\sqrt{4x^2-x}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{\sqrt{x^2\left(4-\dfrac{1}{x}\right)}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{-x\sqrt{4-\dfrac{1}{x}}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1}{\sqrt{4-\dfrac{1}{x}}+2}=\dfrac{1}{\sqrt{4}+2}=\dfrac{1}{2+2}=\dfrac{1}{4}\)

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-2}{3-\sqrt{x^2+7}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{1-\dfrac{2}{x}}{\dfrac{3}{x}-\sqrt{1+\dfrac{7}{x^2}}}\)

\(=\dfrac{1}{0-\sqrt{1+0}}=\dfrac{1}{-1}=-1\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-x}-\sqrt{4x^2+1}}{2x+3}\)

\(=\dfrac{\sqrt{x^2\left(1-\dfrac{1}{x}\right)}-\sqrt{x^2\left(4+\dfrac{1}{x^2}\right)}}{2x+3}\)

\(=\dfrac{-x\cdot\sqrt{1-\dfrac{1}{x}}+x\cdot\sqrt{4+\dfrac{1}{x^2}}}{x\left(2+\dfrac{3}{x}\right)}\)

\(=\dfrac{-\sqrt{1-\dfrac{1}{x}}+\sqrt{4+\dfrac{1}{x^2}}}{2+\dfrac{3}{x}}=\dfrac{-1+2}{2}=\dfrac{1}{2}\)

18 tháng 11 2023

`a)lim_{x->+oo} (2x-\sqrt{x^2+4x-3})`       `ĐK: x < -2-\sqrt{7};x > -2+\sqrt{7}`

`=lim_{x->+oo} [x(2-\sqrt{1+4/x -3/[x^2]}]`

`=+oo`

`b)lim_{x->+oo} (\sqrt{4x^2-3x+1}-2x)`            

`=lim_{x->+oo} [4x^2-3x+1-4x^2]/[\sqrt{4x^2-3x+1}+2x]`

`=lim_{x->+oo} [-3x+1]/[\sqrt{4x^2-3x+1}+2x]`

`=lim_{x->+oo} [-3+1/x]/[\sqrt{4-3/x+1/[x^2]}+2]`

`=-3/4`

a: \(=lim_{x->-\infty}\dfrac{2x-5+\dfrac{1}{x^2}}{7-\dfrac{1}{x}+\dfrac{4}{x^2}}\)

\(=\dfrac{2x-5}{7}\)

\(=\dfrac{2}{7}x-\dfrac{5}{7}\)

\(=-\infty\)

b: \(=lim_{x->+\infty}x\sqrt{\dfrac{1+\dfrac{1}{x}+\dfrac{3}{x^2}}{3x^2+4-\dfrac{5}{x^2}}}\)

\(=lim_{x->+\infty}x\sqrt{\dfrac{1}{3x^2+4}}=+\infty\)

a: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{4+\dfrac{3}{x}}{2}=\dfrac{4}{2}=2\)

b: \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}}{3+\dfrac{1}{x}}=0\)

c: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}}{1+\dfrac{1}{x}}=1\)

NV
27 tháng 2 2020

\(=\frac{\left|x\right|\sqrt{1+\frac{2}{x}}+3x}{\left|x\right|\sqrt{4+\frac{1}{x^2}}-x+3}=\frac{-x\left(\sqrt{1+\frac{2}{x}}-3\right)}{-x\left(\sqrt{4+\frac{1}{x^2}}+1+\frac{3}{x}\right)}=\frac{1-3}{2+1+0}=...\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

Lời giải:
a) 

\(\lim\limits_{x\to +\infty}\frac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}=\lim\limits_{x\to +\infty}\frac{\sqrt[3]{1+\frac{2}{x}-\frac{4}{x^2}+\frac{1}{x^3}}}{\sqrt{2+\frac{1}{x}-\frac{8}{x^2}}}\)

\(=\frac{1}{\sqrt{2}}\)

b) 

\(\lim\limits_{x\to -\infty}\frac{\sqrt{x^2-2x+4}-x}{3x-1}=\lim\limits_{x\to -\infty}\frac{\sqrt{1-\frac{2}{x}+\frac{4}{x^2}}+1}{-3+\frac{1}{x}}=\frac{-1}{3}\)