Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng song song với d1 và d2 là:
(d3): 2x - 3y + c (với c khác 1 và c khác 1,5)
Ta thấy d1 // d2 do chúng có cùng vecto pháp tuyến là
\(\overrightarrow{n}=\left(2;3\right)\)
d đối xứng với d1 qua d2 ⇒ d // d1 // d2 (1)
và d đi qua đầu mút còn lại của một đoạn thẳng có một đầu mút nằm trên d1 và trung điểm của đoạn thẳng ấy nằm trên d2 (2)
(1) ⇒ d có vecto pháp tuyến là \(\overrightarrow{n}=\left(2;3\right)\)
Gọi M (1; 1) ∈ d1 và N (1; -1) ∈ d2. Gọi giao điểm của MN với d là P
Từ (2) ⇒ N là trung điểm của MP
⇒ P(1; -3)
Vậy d đi qua P(1; -3) và có vecto pháp tuyến là \(\overrightarrow{n}=\left(2;3\right)\)
⇒ Phương trình của d là : 2 (x - 1) + 3 (y + 3) = 0
hay 2x + 3y + 7 = 0
Với d1: 4x – 2y + 6 = 0 có vecto pháp tuyến là: n1→(4;-2)
và d2: x – 3y + 1 = 0 có vecto pháp tuyến là: n2→(1;-3) ; ta có :
M thuộc (d1) nên M(1-2t;1+t)
Theo đề, ta có: d(M;d2)=d(M;d3)
=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)
=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|
=>|-2t+3|=|-11t+3|
=>-2t+3=-11t+3 hoặc -2t+3=11t-3
=>t=0 hoặc t=6/13
=>M(1;1); M(1/13; 19/13)
ĐÁP ÁN B
Đường thẳng qua A và tạo với d1d2 các góc bằng nhau khi vuông góc với phân giác của góc tạo bởi d1d2.
Do vậy số lượng đường thẳng cần tìm là 2.
Gọi đường tròn tâm \(I\left(a;b\right)\Rightarrow d\left(I;d_1\right)=d\left(I;d_2\right)\)
\(\Rightarrow\dfrac{\left|3a-4b+1\right|}{5}=\dfrac{\left|4a+3b-7\right|}{5}\)
\(\Rightarrow\left[{}\begin{matrix}3a-4b+1=4a+3b-7\\3a-4b+1=-4a-3b+7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=-7b+8\\b=7a-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-7b+8;b\right)\\I\left(a;7a-6\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}IA^2=\left(-7b+6\right)^2+\left(b-3\right)^2\\IA^2=\left(a-2\right)^2+\left(7a-9\right)^2\end{matrix}\right.\)
\(IA^2=d^2\left(I;d_1\right)\Rightarrow\left[{}\begin{matrix}\left(-7b+6\right)^2+\left(b-3\right)^2=\left(b-1\right)^2\\\left(a-2\right)^2+\left(7a-9\right)^2=\left(a-1\right)^2\end{matrix}\right.\)
Giờ giải pt bậc 2 là được
Giao điểm A của d1 và d2 là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-2y+5=0\\2x-3y+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow A\left(1;3\right)\)
Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt
Phương trình d:
\(3\left(x-1\right)+4\left(y-3\right)=0\Leftrightarrow3x+4y-15=0\)
Yêu cầu của đề là gì vậy bạn?