K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

2D=1+1/7+1/72+...+1/799

2D-D=(1+1/7+1/72+...+1/799)-(1/7+1/72+...1/7100)

D=1-1/7100

Giải:

D=1/7+1/72+1/73+...+1/7100

7D=1+1/7+1/72+...+1/799

7D-D=(1+1/7+1/72+...+1/799)-(1/7+1/72+1/73+...+1/7100)

6D=1-1/7100

D=1-1/7100/6

Chúc bạn học tốt!

NV
17 tháng 4 2022

Đặt \(A=\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}\)

\(7A=\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{99}}\)

\(\Rightarrow7A-A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)

\(\Rightarrow6A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)

\(\Rightarrow A=\dfrac{1}{6}\left(\dfrac{1}{7}-\dfrac{1}{7^{100}}\right)\)

14 tháng 7 2023

Ta đặt

  \(A=\dfrac{7}{1\times2}+\dfrac{7}{2\times3}+...+\dfrac{7}{99\times100}\)

\(\dfrac{1}{7}\times A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+....+\dfrac{1}{99\times100}\)

\(\dfrac{1}{7}\times A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{7}\times A=1-\dfrac{1}{100}\)

\(\dfrac{1}{7}\times A=\dfrac{99}{100}\)

\(A=\dfrac{99}{100}\div\dfrac{1}{7}\)

\(A=\dfrac{693}{100}\)

14 tháng 7 2023

= 7.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100)

= 7.(1 - 1/100)

= 7 . 99/100

= 693/100

12 tháng 7 2021

a)A=\(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{-3}{5}+\dfrac{3}{5}\right)+\left(\dfrac{5}{7}-\dfrac{5}{7}\right)+\left(\dfrac{-7}{9}+\dfrac{7}{9}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(\dfrac{-11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)

A=0+0+0+...+0+\(\dfrac{13}{15}\)

A=\(\dfrac{13}{15}\)

b) Ta có: \(-\dfrac{1}{9\cdot10}-\dfrac{1}{8\cdot9}-\dfrac{1}{7\cdot8}-...-\dfrac{1}{2\cdot3}-\dfrac{1}{1\cdot2}\)

\(=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(=-\left(1-\dfrac{1}{10}\right)=\dfrac{-9}{10}\)

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Lời giải:

Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)

$\Rightarrow A< \frac{1}{50}$

30 tháng 3 2023

\(\dfrac{3}{x}+\dfrac{x}{x+1}+\dfrac{x-3}{x}=\dfrac{13}{7}\left(x\ne0;x\ne-1\right)\)

\(< =>\dfrac{3\cdot7\left(x+1\right)}{7x\left(x+1\right)}+\dfrac{7x\cdot x}{7x\left(x+1\right)}+\dfrac{7\left(x-3\right)\left(x+1\right)}{7x\left(x+1\right)}=\dfrac{13x\left(x+1\right)}{7x\left(x+1\right)}\)

suy ra

\(21x+21+7x^2+7\left(x^2+x-3x-3\right)=13x^2+13x\)

\(< =>21x+21+7x^2+7x^2+7x-21x-21=13x^2+13x\)

\(< =>7x^2+7x^2-13x^2+21x+7x-21x-13x+21-21=0\)

\(< =>x^2-6x=0\\ < =>x\left(x-6\right)=0\\ < =>\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(loại\right)\\x=6\left(tm\right)\end{matrix}\right.\)

29 tháng 3 2017

\(4\frac{2}{7}.3=\left(4.3\right)+\left(\frac{2}{7}.3\right)=12+\frac{6}{7}=12\frac{6}{7}\)

tk nha

\(=\dfrac{7}{12}-\dfrac{3}{14}=\dfrac{98-36}{168}=\dfrac{62}{168}=\dfrac{31}{84}\)

18 tháng 4 2021

a) \(\dfrac{5}{9}:\left(\dfrac{13}{7}+\dfrac{13}{9}\right)-\dfrac{5}{3}\)(chỗ này mk lười chép lại đề)

=\(\dfrac{5}{9}:\dfrac{208}{63}-\dfrac{5}{3}\)

=\(\dfrac{5}{9}.\dfrac{63}{208}-\dfrac{5}{3}\)

=\(\dfrac{5.63}{9.208}-\dfrac{5}{3}\)

=\(\dfrac{5.7}{1.208}-\dfrac{5}{3}\)

=\(\dfrac{36}{208}-\dfrac{5}{3}\)

=\(\dfrac{108}{624}-\dfrac{1040}{624}\)

=\(\dfrac{-932}{624}\)

=\(\dfrac{233}{156}\)

                                 còn câu b mk chưa học nên mk chịu

 

Giải:

5/9:13/7+5/9:13/9 -1 2/3

=5/9.7/13+5/9.9/13-5/3

=5/9.(7/13+9/13)-5/3

=5/9.16/13-5/3

=80/117-5/3

=-115/117

4 2/5 : 0,5% -1 3/7 .14% +(-0,5)

=22/5:1/200-10/7.7/50 +(-1/2)

=880-1/5-1/2

=8793/10