Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để chứng minh tam giác MAB đều, ta cần chứng minh MA = MB và góc MAB = 60°.
Vì MA = MD và tam giác MDA là tam giác đều, nên góc MDA = 60°. Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90°. Từ đó, ta có góc MAD = 90° - 60° = 30°.
Do đó, góc MAB = góc MAD + góc BAC = 30° + 90° = 120°.
Vì góc MAB = 120° và góc MAB = 60°, nên tam giác MAB là tam giác đều.
b) Để chứng minh tam giác ACD vuông, ta cần chứng minh góc ADC = 90°.
Vì MA = MD và tam giác MDA là tam giác đều, nên góc MDA = 60°. Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90°. Từ đó, ta có góc MAD = 90° - 60° = 30°.
Vì CD là trung tuyến trong tam giác ABC, nên góc CAD = góc BAC/2 = 90°/2 = 45°.
Do đó, góc ADC = góc MAD + góc CAD = 30° + 45° = 75°.
Vì góc ADC ≠ 90°, nên tam giác ACD không vuông.
c) Để chứng minh tam giác KGN cân, ta cần chứng minh KG = GN và góc KGN = góc NGK.
Vì DK là đường cao trong tam giác MDC, nên góc KDM = 90°.
Vì tam giác MDA là tam giác đều, nên góc MDA = 60°. Từ đó, ta có góc MDC = 90° - 60° = 30°.
Vì tam giác KDM là tam giác vuông tại K, nên góc KDM = 90°. Vì góc KDM = 30°, nên góc KDG = 90° - 30° = 60°.
Tương tự, ta có góc NGC = 60°.
Vì góc KDG = góc NGC = 60°, nên tam giác KGN là tam giác cân.
a: ΔABC vuông tại A
=>góc B+góc C=90 độ
=>góc B=60 độ
ΔACB vuông tại A có AM là trung tuyến
nên MA=MB=MC=BC/2
Xét ΔMAB có MA=MB và góc B=60 độ
nên ΔMAB đều
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hình chữ nhật
=>góc ACD=90 độ
=>ΔACD vuông tại C
c: Xét ΔDCK vuông tại C và ΔBAK vuông tại A có
DC=BA
CK=AK
=>ΔDCK=ΔBAK
=>DK=KB
Xét ΔCAD có
DK,CM là trung tuyến
DK cắt CM tại N
=>N là trọng tâm
=>KN=1/3KD
Xét ΔCAB có
AM,BK là trung tuyến
AM cắt BK tại G
=>G là trọng tâm
=>KG=1/3KB
=>KG=KN
=>ΔKGN cân tại K
1, Xét tứ giác ABDC có :
M là trung điểm AD
Vì : DM=MA
Và M là trung điểm BC
Vì : BM=MC
=> AD và BC cắt nhau tại trung điểm mỗi đường
Hay ABCD là HBH
Mà HBH có 1 góc vuông là hình chữ nhật
Vậy đpcm
2a, Xét tam giác BHA có
BE=EH
Và AN=NH
=> EN là đtb của tam giác BHA
=> EN=1/2BA
Và EN//AB
Mà : BA//DC (Vì ABCD là HCN)
Nên : EN//DF (1)
Ta lại có : DF=1/2DC ( DF=FC)
Mà : AB=DC ( Vì ABCD là HCN)
Nên : DF=1/2AB
Mà : EN=1/2AB
=> DF=EN (2)
Từ (1)(2) suy ra : EDNF là hình bình hành
2b, mình không biết làm
Nhớ k mình nha !
1. Ta có: M là trung điểm của BC, M là trung điểm của AD => ABDC là hình bình hành
Xét tam giác ABC vuông tại A có AM là trung tuyến => AM=1/2 BC mà AM=MD => MD = 1/2 BC => tam giác BDC vuông tại D
Xét hình bình hành ABDC có góc D= 90* => ABDC là hình chữ nhật
a: Xét tứ giác ACDB có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ACDB là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ACDB là hình chữ nhật
a: Xét tứ giác ACDB có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ACDB là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ACDB là hình chữ nhật
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH
CM: góc AEK = góc ABC
Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF
=> tam giác EJA cân tại J => AEJ = EAH (1)
Xét tam giác vuông ABH => EAH +ABC = 90
Xét tam giác vuông ABC=> ABC + ACB = 90
=> EAH = ACB và (1) => ACB = AEJ (2)
Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC
=> tam giác ABM cân tại M => EAK = ABC (3)
Xét tam giác EAK: có: AEJ + EAK = ACB + ABC = 90 ( do 2 và 3)
=> tam giác AEK vuong tại K
Hay AM vuông EF
4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI
Xét tam giác AID, có:
H là trung ddierm của AI, M là trung điểm của AD
=> HM là đường trung bình của tam giác AID => HM // ID
=> tứ giác BIDC là hình thang
Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)
Xét tứ giác ABCD có:
M là trung điểm BC
M là trung điểm AD
M = BC giao AD
=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật
=> DCB = ABC (DC // AB và solle trong) (5)
Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/.
Xét △AMB và △DMC có:
\(\begin{matrix}MA=MD\left(gt\right)\\\hat{AMB}=\hat{CMD}\left(đối\text{ }đỉnh\right)\\MB=MC\left(gt\right)\end{matrix}\) ⇒ \(\Delta AMB=\Delta DMC\left(c.g.c\right)\Rightarrow\hat{ABM}=\hat{DCM}\left(1\right)\)
- Ta có: \(AM=\dfrac{1}{2}BC=MB\) ⇒ △AMB cân tại M \(\Rightarrow\hat{MAB}=\hat{MBA}\left(2\right)\)
Mặt khác: \(\hat{MAB}=\hat{MDC}\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow\hat{MCD}=\hat{MDC}\left(4\right)\)
Mà AF // BC \(\Rightarrow\hat{AFC}=\hat{MCD}\left(đv\right)\left(5\right)\)
Từ (4) và (5) \(\Rightarrow\hat{AFC}=\hat{MDC}\) hay △ADF cân tại A (đpcm).