Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)
Ta có : 4x2 + 2x + 1
= (2x)2 + 2.2x.\(\frac{1}{2}\) + \(\frac{1}{2}+\frac{3}{4}\)
= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Mà : (2x + \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(>0\forall x\)
Vậy 4x2 + 2x + 1 \(>0\forall x\)
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
-3x^2+9x-12
=-3(x^2-3x+4)
=-3(x^2-3x+9/4+7/4)
=-3(x-3/2)^2-21/4<0
Bài 1:
a) \(ay-ax-2x+2y\)
\(=-a\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(-a-2\right)\)
b) \(5ax-7by-7ay+5bx\)
\(=5x\left(a+b\right)-7y\left(a+b\right)\)
\(=\left(a+b\right)\left(5x-7y\right)\)
c) \(4x^2-9x+5\)
\(=4x^2-4x-5x+5\)
\(=4x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(x-1\right)\left(4x-5\right)\)
d) \(x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
Bài 2:
a) \(x^2+x+\frac{1}{2}\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\forall x\)
b) \(x^2+5x+7\)
\(=x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{3}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)
c) \(2x^2-3x+9\)
\(=2\left(x^2-\frac{3}{2}x+\frac{9}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{63}{16}\right)\)
\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{63}{16}\right]\)
\(=2\left(x-\frac{3}{4}\right)^2+\frac{63}{8}>0\forall x\)
hơi ngán dạng này :((((
a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
b,
\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)
c,
\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,
\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))
\(3x^2+9x+65=3x^2+9x+\frac{81}{12}+\frac{233}{4}=\left(\sqrt{3}x+\frac{9}{2\sqrt{3}}\right)^2+\frac{233}{4}\)
Ta có \(\left(\sqrt{3}x+\frac{9}{2\sqrt{3}}\right)^2\ge0\) ( với \(\forall\) x) => \(\left(\sqrt{3}x+\frac{9}{2\sqrt{3}}\right)^2+\frac{233}{4}\ge0\) ( với \(\forall\) x)
=> đpcm
`3x^2 + 9x + 65`
`= 3 (x^2 + 3x + 65/3)`
`= 3 (x^2 + 2 . x . 3/2 + 9/4 - 9/4 + 65/3)`
`= 3 (x + 3/2)^2 + 233/4`
Vì `(x+3/2)^2` lớn hơn hoặc = `0` với mọi `x`
`-> 3 (x+3/2)^2` lớn hơn hoặc `=0` với mọi `x`
`-> 3 (x+3/2)^2 +233/4` lớn hơn hoặc bằng `233/4 > 0`
`-> 3x^2 +9x+65 > 0`