Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đăng từng câu nhé bạn
chứ kiểu vậy thì ko có ai giải cho bạn đâu
A = 1/2 + 1/4 + 1/8 + ... + 1/128
A = 1/2^1 + 1/2^2 + 1/2^3 + ... + 1/2^7
2A = 1 + 1/2 + 1/2^2 + ... + 1/2^6
2A - A = 1 - 1/2^7 = A
\(a,\frac{1}{3}x+0.25=\frac{5}{7}\)
\(\Leftrightarrow\frac{1}{3}x=\frac{13}{28}\)
\(\Leftrightarrow x=\frac{39}{28}\)
vậy...
\(b,\frac{11}{12}x+0,25=\frac{5}{6}\)
\(\Leftrightarrow\frac{11}{12}x=\frac{7}{12}\)
\(\Leftrightarrow x=\frac{7}{11}\)
vậy.....
\(c,\left(\frac{-1}{3}\right)^2+\frac{2}{3}x=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{9}+\frac{2}{3}x=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{5}{36}\)
\(\Leftrightarrow x=\frac{5}{24}\)
vậy......
\(d,\left(3x+2\right)^3=-\frac{8}{125}\)
\(\Leftrightarrow3x+2=-\frac{2}{5}\)
\(\Leftrightarrow3x=-\frac{12}{5}\)
\(\Leftrightarrow x=-\frac{4}{5}\)
vậy.......
\(\frac{1}{3x}+0,25=\frac{5}{7}\)
\(\frac{1}{3x}+\frac{1}{4}=\frac{5}{7}\)
\(\frac{1}{3x}=\frac{13}{28}\)
\(3x=\frac{28}{13}\)
\(x=\frac{28}{39}\)
\(\frac{11}{12x}+0,25=\frac{5}{6}\)
\(\frac{11}{12x}+\frac{1}{4}=\frac{5}{6}\)
\(\frac{11}{12x}=\frac{7}{12}\)
\(x=\frac{11}{12}:\frac{7}{12}\)
\(x=\frac{7}{11}\)
\(\left(-\frac{1}{3}\right)^2+\frac{2}{3x}=\frac{1}{4}\)
\(\frac{1}{9}+\frac{2}{3x}=\frac{1}{4}\)
\(\frac{2}{3x}=\frac{5}{36}\)
\(x=\frac{2}{3}:\frac{5}{36}\)
\(x=\frac{5}{24}\)
\(\left(3x+2\right)^3=\left(-\frac{8}{125}\right)\)
\(\left(3x+2\right)^3=\left(-\frac{2}{5}\right)^3\)
\(\Rightarrow3x+2=-\frac{2}{3}\)
\(3x=-\frac{8}{3}\)
\(x=-\frac{9}{8}\)
a, x:(1/2)3=-1/2
x:1/8= -1/2
x= -1/2.1/8
x=-1/16
b,(3/4)5.x=(3/4)7
x=(3/4)7:(3/4)5
x= (3/4)2
c,(2/5)^8:x=(2/5)^6
x=.......
như cái trên nha lm giống thế
\(a,\frac{(-10)^5}{3\cdot(-6)^4}=\frac{(-2\cdot5)^5}{3\cdot(-2\cdot3)^4}=\frac{(-2)^5\cdot5^5}{3\cdot(-2)^4\cdot3^4}=\frac{(-2)^5\cdot5^5}{(-2)^4\cdot3^5}=-2\cdot\frac{5^5}{3^5}=\frac{-6250}{243}\)
\(b,\frac{2^{15}\cdot9^4}{6^6\cdot8^3}=\frac{\left[2^3\right]^5\cdot\left[3^2\right]^4}{\left[3\cdot2\right]^6\cdot\left[2^3\right]^3}=\frac{2^{15}\cdot3^8}{3^6\cdot2^6\cdot2^9}=\frac{2^{15}\cdot3^8}{3^6\cdot2^{15}}=\frac{3^8}{3^6}=3^2=9\)
\(c,\left[1+\frac{2}{3}-\frac{1}{4}\right]\cdot\left[\frac{4}{5}-\frac{3}{4}\right]^2\)
\(=\left[\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right]\cdot\left[\frac{16}{20}-\frac{15}{20}\right]^2\)
\(=\frac{17}{12}\cdot\left[\frac{1}{20}\right]^2=\frac{17}{12}\cdot\frac{1^2}{20^2}=\frac{17}{12}\cdot\frac{1}{400}=\frac{17}{4800}\)
\(d,2^3+3\cdot\left[\frac{1}{2}\right]^0+\left[(-2)^2:\frac{1}{2}\right]\)
\(=8+3\cdot\frac{1^0}{2^0}+\left[4:\frac{1}{2}\right]\)
\(=8+3\cdot1+8=8+3+8=19\)
a) Ta có: \(\frac{1}{27}x^3-8y^6\)
\(=\left(\frac{1}{3}x\right)^3-\left(2y^2\right)^3\)
\(=\left(\frac{1}{3}x-2y^2\right)\left(\frac{1}{9}x^2+\frac{2}{3}xy^2+4y^4\right)\)
b) Ta có: \(t^2x^6-\frac{4}{9}y^4\)
\(=\left(tx^3\right)^2-\left(\frac{2}{3}y^2\right)^2\)
\(=\left(tx^3-\frac{2}{3}y^2\right)\left(tx^3+\frac{2}{3}y^2\right)\)
c) Ta có: \(64x^6+\frac{1}{27}y^3\)
\(=\left(4x^2\right)^3+\left(\frac{1}{3}y\right)^3\)
\(=\left(4x^2+\frac{1}{3}y\right)\left(8x^4-\frac{4}{3}x^2y+\frac{1}{9}y^2\right)\)
d) Ta có: \(\frac{1}{16}a^2x^6-y^4\)
\(=\left(\frac{1}{4}ax^3\right)^2-\left(y^2\right)^2\)
\(=\left(\frac{1}{4}ax^3-y^2\right)\left(\frac{1}{4}ax^3+y^2\right)\)
e) Ta có: \(m^4x^6-\frac{4}{25}y^2\)
\(=\left(m^2x^3\right)^2-\left(\frac{2}{5}y\right)^2\)
\(=\left(m^2x^3-\frac{2}{5}y\right)\left(m^2x^3+\frac{2}{5}y\right)\)
f) Ta có: \(27x^6-\frac{1}{64}y^3\)
\(=\left(3x^2\right)^3-\left(\frac{1}{4}y\right)^3\)
\(=\left(3x^2-\frac{1}{4}y\right)\left(9x^4+\frac{3}{4}x^2y+\frac{1}{16}y^2\right)\)