K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(D=10^9+10^8+10^7\)

\(=10^7\left(10^2+10+1\right)\)

\(=10^7\cdot101=10^6\cdot1010=10^6\cdot555\cdot2=10^6\cdot222\cdot5\)

=>D chia hết cho 555 và D chia hết cho 222

21 tháng 6 2024

Ta có :

\(D=10^9+10^8+10^7\)

\(=10^7.\left(10^2+10+1\right)\)

\(=10^7.111\)

\(=10^6.5.2.111\)

\(=10^6.555.2=10^6.5.222\)

\(\Rightarrow D\) chia hết cho \(555\) và \(222\)

25 tháng 8 2018

a)\(10^9+10^8+10^7=10^7\left(10^2+10+1\right)=10^7\cdot111=2\cdot10^6\cdot555⋮555\)

b)\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{24}\cdot45⋮45\)

Chúc bạn học tốt :)!

23 tháng 10 2015

555^2≡5 (mod 10)
555"^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra 
333^555^777 đồng dư với 333^5
Do 333^5=3332.3333≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2)Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.

25 tháng 8 2023

bạn lớp mấy rồi còn dùng web này nữa ko?

 

25 tháng 8 2023

giờ chắc bạn chả cần câu trả lời nữa

15 tháng 7 2016

1) \(10^{19}+10^{18}+10^{17}=10^{16}.10^3+10^{16}.10^2+10^{16}.10=10^{16}.\left(1000+100+10\right)=10^{16}.1110\)

vì 1110 : 555 bằng 2 

=> ................... chia hết cho 555

15 tháng 7 2016

1) ( 1019+ 1018+1017) chia hết cho 555

= 1017.102+1018.10+1017

1017.(102+10+1)

= 1017.111

= 1016.10.111

= 1016.1110 = 1016.555.2

=> ( 1019+ 1018+1017) chia hết cho 555

9 tháng 4 2018

Ta có :

\(555^2\equiv5\left(mod10\right)\)

\(555^3\equiv5\left(mod10\right)\)

\(555^5=555^2\cdot555^3\equiv5\cdot5\equiv5\left(mod10\right)\)

\(\Rightarrow555^{777}\equiv5\left(mod10\right)\)

Suy ra :

\(333^{555^{777}}\) đồng dư với \(333^5\)

Do \(333^5=3332\cdot3333\equiv3\left(mod10\right)\)

Vậy chữ số tận cùng của \(333^{555^{777}}\) là 3 (1)

Tương tự : \(777^{555^{333}}\) có chữ số chữ số tận cùng là 7 (2)

Từ (1) ; (2) suy ra :

\(333^{555^{777}}\)\(+777^{555^{333}}\) có chữ số tận cùng là 0

Vậy \(333^{555^{777}+}777^{555^{333}}\) \(⋮10\)

25 tháng 8 2018

Tại sao 3332.3333 đồng dạng với 3 vậy bạn?

28 tháng 10 2021

\(10^9+10^8+10^7\)

\(=10^7\left(10^2+10+1\right)\)

\(=10^7\cdot111⋮555\)

7 tháng 9 2019

a/ So sánh 222555 và 555222

Ta có 222555=(2225)111=(25.1115)111=(32.1115)111;555222=(5552)111=(52.1112)111=(25.1112)111

Ta thấy ngay 32.1115>5.1112

Vậy 222555>555222

b/So sánh 3012 và1018

Ta có 3012=(302)6=9006;1018=(103)6=10006

Ta thấy 900<1000

Vậy 3012 <1018

c/So sánh 536 và1024

Ta có \(\frac{5^{36}}{10^{24}}=\frac{5^{36}}{2^{24}.5^{24}}=\frac{5^{12}}{2^{24}}=\left(\frac{5}{2^2}\right)^{12}=\left(\frac{5}{4}\right)^{12}>1\)

Vậy 536>1024

7 tháng 9 2019

tặng 3 tym cho những người trả lời nhanh nhất

thời gian từ đây đến 5 giờ chiều