K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

sai đề bn ơi

24 tháng 8 2021

không sai đâu nha bn, mình làm đc rồi

22 tháng 8 2021

a)

=15(can6-1)/(6-1)+4/(4-2)-12/(3-4)

=3(can6-1)+2+12

=3\(\sqrt{6}\)-3+2+12

=17+3can6

các câu còn lại tương tự liên hợp mẫu 

22 tháng 8 2021

làm cho e luôn vs đc k anh

e đg cần gấp á

1: Ta có: \(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}+1\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}-1}{x-1}\)

Bài 1: 

a: \(\sqrt{0.49a^2}=-0.7a\)

b: \(\sqrt{25\left(a-7\right)^2}=5a-35\)

c: \(\sqrt{a^4\left(a-2\right)^2}=a^2\cdot\left(a-2\right)\)

d: \(\dfrac{1}{a-3b}\cdot\sqrt{a^6\left(a-3b\right)^2}\)

\(=\dfrac{1}{a-3b}\cdot a^3\cdot\left(a-3b\right)=a^3\)

Bài 2: 

a: \(2\left(x+y\right)\cdot\sqrt{\dfrac{1}{x^2+2xy+y^2}}\)

\(=2\left(x+y\right)\cdot\dfrac{1}{x+y}\)

=2

b: \(\dfrac{3x}{7y}\cdot\sqrt{\dfrac{49y^2}{9x^2}}\)

\(=\dfrac{3x}{7y}\cdot\dfrac{-7y}{3x}\)

=-1

13 tháng 9 2021

\(1,\\ a,=\dfrac{\left(3+2\sqrt{3}\right)\sqrt{3}}{3}+\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{1}\\ =\dfrac{3\sqrt{3}+6}{3}+\sqrt{2}=\sqrt{3}+1+\sqrt{2}\\ b,=\left(\dfrac{\sqrt{5}+\sqrt{2}}{3}-\dfrac{\sqrt{5}-\sqrt{2}}{3}+1\right)\cdot\dfrac{1}{\left(\sqrt{2}+1\right)^2}\\ =\dfrac{\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}+3}{3}\cdot\dfrac{1}{\left(\sqrt{2}+1\right)^2}\\ =\dfrac{2\sqrt{2}+3}{3\left(3+2\sqrt{2}\right)}=\dfrac{1}{3}\)

\(2,\\ A=2x+\sqrt{\left(x-3\right)^2}=2x+\left|x-3\right|\\ =2\left(-5\right)+\left|-5-3\right|=-10+8=-2\\ B=\dfrac{\sqrt{\left(2x+1\right)^2}}{\left(x-4\right)\left(x+4\right)}\left(x-4\right)^2=\dfrac{\left|2x+1\right|\left(x-4\right)}{x+4}\\ B=\dfrac{17\cdot4}{12}=\dfrac{17}{3}\)

5 tháng 9 2021

Bài nào?

5 tháng 9 2021

5.

\(A=B\Leftrightarrow\left\{{}\begin{matrix}x-5\ge0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x>-2\end{matrix}\right.\Leftrightarrow x\ge5\)

2 tháng 9 2021

hình bé quá

2 tháng 9 2021

sin 650=cos 350
\(cos70^0=sin30^0\)
\(tan80^0=cot20^0\)
\(cot68^0=tan32^0\)

NV
7 tháng 5 2023

a.

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a>0\\\sqrt{x^2+x+2}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=x+1\)

Pt trở thành:

\(a+b=2\left(a^2-b^2\right)\)

\(\Leftrightarrow a+b=\left(2a-2b\right)\left(a+b\right)\)

\(\Leftrightarrow2a-2b=1\) (do \(a+b>0\))

\(\Leftrightarrow2a=2b+1\)

\(\Leftrightarrow2\sqrt{x^2+2x+3}=2\sqrt{x^2+x+2}+1\)

\(\Leftrightarrow4\left(x^2+2x+3\right)=4\left(x^2+x+2\right)+1+4\sqrt{x^2+x+2}\)

\(\Leftrightarrow4x+3=4\sqrt{x^2+x+2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{3}{4}\\16\left(x^2+x+2\right)=\left(4x+3\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{3}{4}\\8x=23\end{matrix}\right.\) \(\Rightarrow x=\dfrac{23}{8}\)

NV
7 tháng 5 2023

b.

ĐKXĐ: \(x\ge3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-3}=a\ge0\\\sqrt{x+2}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=-5\)

Phương trình trở thành:

\(\left(a-b\right)\left(ab+1\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(vô-nghiệm\right)\\ab+1=a+b\end{matrix}\right.\)

\(\Rightarrow ab-a-b+1=0\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=1\\\sqrt{x+2}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\left(ktm\right)\end{matrix}\right.\)

30 tháng 8 2019

Gọi ptdt : y=ax +b ( d1)

+Vì : d1 // (Δ) : y = 4x + 2 => a=4 và b khác 2 => ptdt: y=4x+b (d1)

+Vì : d1 đi qua M ( -2;2) nên thay x=-2, y=2 vào d1 ta có:

2= 4.-2+b <=> b-8=2 <=> b=10 (t/m b khác 2)

Vậy ptdt cần tìm là : y=4x+ 10