Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=\left[\left(\sqrt{2}+\sqrt{3}\right)^2-5\right]\cdot\left[\left(\sqrt{5}\right)^2-\left(\sqrt{2}-\sqrt{3}\right)^2\right]\)
\(=2\sqrt{6}\left(5-5+2\sqrt{6}\right)=2\sqrt{6}\cdot2\sqrt{6}=24\)
2: \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
=>\(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)
\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)
=>\(A=\sqrt{5}+1\)
Ta có \(\dfrac{a^3}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}=\dfrac{2a-b}{2}\)(áp dụng cosi cho \(a^2+b^2\ge2ab\))
\(\dfrac{b^3}{b^2+1}=b-\dfrac{b}{b^2+1}\ge b-\dfrac{b}{2b}=b-\dfrac{1}{2}=\dfrac{2b-1}{2}\)(áp dụng cosi cho\(b^2+1\ge2b\))
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}=\dfrac{2-a}{2}\)( áp dụng cosi cho \(a^2+1\ge2a\))
Cộng vế theo vế
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+1}+\dfrac{1}{a^2+1}\ge\dfrac{2a-b+2b-1+2-a}{2}\)\(\ge\dfrac{a+b+1}{2}\left(đpcm\right)\)
Dấu "=" xảy ra <=> a=b=1
4:
a: cos^2a=1-(1/2)^2=1-1/4=3/4
=>\(cosa=\dfrac{\sqrt{3}}{2}\)
\(tana=\dfrac{1}{2}:\dfrac{\sqrt{3}}{2}=\dfrac{1}{\sqrt{3}}\)
\(cota=1:\dfrac{1}{\sqrt{3}}=\sqrt{3}\)
b: sin^2a=1-(3/4)^2=1-9/16=7/16
=>\(sina=\dfrac{\sqrt{7}}{4}\)
\(tana=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cota=1:\dfrac{\sqrt{7}}{3}=\dfrac{3}{\sqrt{7}}\)
a: \(C=\dfrac{x+\sqrt{x}-x+\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}+1}\)
b: C<1
=>\(\dfrac{2-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
=>1-căn x<0
=>x>1
AM nhỏ nhất khi MA là khoảng cách từ M xuống (d)
y=2x+3
=>2x-y+3=0
Gọi (d') là đường thẳng đi qua M và vuông góc (d)
=>MA nhỏ nhất là khi A là giao của (d) với (d')
(d') vuông góc (d)
=>(d'): y=-1/2x+b
Thay x=4 và y=2 vào (d'), ta được:
b-1/2*4=2
=>b-2=2
=>b=4
=>(d'): y=-1/2x+4
Tọa độ A là;
-1/2x+4=2x+3 và y=2x+3
=>-5/2x=-1 và y=2x+3
=>x=2/5 và y=4/5+3=19/5
\(x^2+\sqrt{5}x-10=0\)
\(\Delta=5-4\left(-10\right)=45>0\)
Vậy pt có nghiệm pb
\(x_1=\dfrac{-\sqrt{5}-3\sqrt{5}}{2}=-2\sqrt{5};x_2=\dfrac{-\sqrt{5}+3\sqrt{5}}{2}=\sqrt{5}\)
sửa lại nhé
\(\left\{{}\begin{matrix}3\left(x-y\right)-y=11\\x-2\left(x+5y\right)=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}3x-3y-y=11\\x-2x-10y=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3y-y=11\\x-2x-10y=-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\left(1\right)\end{matrix}\right.\)
Nhân \(-3\) vào \(\left(1\right)\)
\(\left\{{}\begin{matrix}3x-4y=11\left(2\right)\\3x+30y=45\left(3\right)\end{matrix}\right.\)
Lấy \(\left(2\right)-\left(3\right)\) :
\(\Leftrightarrow3x-3x-4y-30y=11-45\)
\(\Leftrightarrow-34y=-34\)
\(\Leftrightarrow x=1\)
Lấy \(x=1\) thay vào \(\left(2\right)\) : \(3.1-4y=11\Leftrightarrow y=2\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(1;2\right)\)
10: \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+\left(\sqrt{3+\sqrt{5}}\right)^2+2\cdot\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=3-\sqrt{5}+3+\sqrt{5}+2\cdot\sqrt{9-5}\)
\(=6+2\cdot2=10\)
11: \(\left(\sqrt{\sqrt{7}+\sqrt{3}}+\sqrt{\sqrt{7}-\sqrt{3}}\right)^2\)
\(=\left(\sqrt{\sqrt{7}+\sqrt{3}}\right)^2+\left(\sqrt{\sqrt{7}-\sqrt{3}}\right)^2+2\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}\)
\(=\sqrt{7}+\sqrt{3}+\sqrt{7}-\sqrt{3}+2\cdot\sqrt{7-3}\)
\(=2\sqrt{7}+2\cdot2=2\sqrt{7}+4\)
12: \(\left(\sqrt{\sqrt{11}+\sqrt{7}}-\sqrt{\sqrt{11}-\sqrt{7}}\right)^2\)
\(=\left(\sqrt{\sqrt{11}+\sqrt{7}}\right)^2+\left(\sqrt{\sqrt{11}-\sqrt{7}}\right)^2-2\cdot\sqrt{\left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right)}\)
\(=\sqrt{11}+\sqrt{7}+\sqrt{11}-\sqrt{7}-2\cdot\sqrt{11-7}\)
\(=2\sqrt{11}-4\)
13:
\(\sqrt{\sqrt{2}-1}\cdot\sqrt{2-\sqrt{3-\sqrt{2}}}\cdot\sqrt{2+\sqrt{3-\sqrt{2}}}\)
\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{4-\left(3-\sqrt{2}\right)}\)
\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{\sqrt{2}+1}\)
\(=\sqrt{2-1}=1\)
14:
\(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{\left(4+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}+4\sqrt{2}-4}=\sqrt{4}=2\)
a) Gọi phương trình đường thẳng (d) đi qua B và C là \(\left(d\right):y=ax+b\)(*)
Thay \(x_B=2;y_B=-2\)vào (*), ta có: \(-2=2a+b\Rightarrow b=-2a-2\)(1)
Thay \(x_C=1;y_C=-3\)vào (*), ta có: \(-3=a+b\Rightarrow b=-a-3\)(2)
Từ (1) và (2) suy ra \(-2a-2=-a-3\Leftrightarrow-a+2a=-2+3\Leftrightarrow a=1\)
\(\Rightarrow b=-a-3=-1-3=-4\)
Vậy phương trình đường thẳng (d) là \(\left(d\right):y=x-4\)
b) Bạn này có thể tự vẽ được.
c) Giả sử (d) cắt trục Ox tại D, cắt trục Oy tại E. Gọi tọa độ của D và E lần lượt là \(\left(x_D;y_D\right)\)và \(\left(x_E;y_E\right)\)
Dễ thấy rằng \(y_D=0\)vì D nằm trên trục Ox; \(x_E=0\)vì E nằm trên trục Oy.
Mà (d) chính là đường thẳng \(\left(d\right):y=x-4\)(**)
Thay \(y=y_D=0;x=x_D\)vào (**), ta có: \(0=x_D-4\Rightarrow x_D=4\)
Vì D nằm trên trục Ox nên ta có \(OD=|x_D|=|4|=4\left(đvđd\right)\)
Bằng cách tương tự ta cũng có thể tính được \(OE=4\left(đvđd\right)\)
Xét \(\Delta ODE\)vuông tại O có \(\tan EDO=\frac{OE}{OD}=\frac{4}{4}=1\Rightarrow\widehat{EDO}=45^0\)
Vậy góc tạo bởi (d) và trục Ox bằng \(45^0\)
d) Vì A, B, C thẳng hàng nên A phải nằm trên đường thẳng BC. Mà đường thẳng BC chính là đường thẳng (d) nên A phải thuộc đường thẳng (d).
Thay \(y=2;x=x_A\)vào phương trình đường thẳng\(\left(d\right):y=x-4\)ta có:
\(2=x_A-4\Rightarrow x_A=6\)
Vậy để A, B, C thẳng hàng thì \(x_A=6\)
Help :(((