Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(x\right)=-x^4-8x^3+5x^2+6x-7\)
\(g\left(x\right)=x^4+8x^3-5x^2+5\)
b: \(f\left(x\right)+g\left(x\right)=6x-2\)
\(f\left(x\right)-g\left(x\right)=-2x^2-16x^3+10x^2+6x-12\)
c: |x|=1 thì x=-1 hoặc x=1
h(-1)=6x(-1)-2=-8
h(1)=6x1-2=4
a/ với f(x)
có : \(-x^4-8x^3+5x^2+6x-7\)
với g(x)
có :\(x^4+8x^3-5x^2+5\)
b, f(x) \(-x^4-8x^3+5x^2+6x-7\)
g(x) \(x^4+8x^3-5x^2\) + 5
f(x)+g(x) = 6x-2
a, \(=2x^2y^2-xy^2-4+5x^2y\)
-> bậc 4
b, \(=\dfrac{2}{3}xy^4-xyz-2x^4y+1\)
-> bậc 5
a) ta có: \(\widehat{BAx}+\widehat{ABy}=60^o+120^o=180^o\)
Mà 2 góc này là 2 góc trong cùng phía ⇒Ax//By
b) ta có: \(\widehat{CBy}+\widehat{BCz}=140^o+40^o=180^o\)
Mà 2 góc này là 2 góc trong cùng phía ⇒By//Cz
c) Ax//By, By//Cz⇒Ax//Cz
cảm ơn bạn nhiều lắm ko bt bạn sinh năm bao nhiêu để dễ xưng hô
có: tam giác ABO cân tại A (gt)
=> AB=AO (tính chất tam giác cân)
Có: AH vuông góc BO (gt)
=> góc AHB = góc AHO (tính chất đường vuông góc)
Xét tam giác AHB và tam giác AHO có
goc AHB = góc AHO (cmt)
AB = AO (cmt)
AH chung
=> tam giác AHB = tam giác AHO (cạnh huyền - cạnh góc vuông)
Bài 6:
Gọi số giấy vụn 3 lớp thu được lần lượt là: \(a,b,c\left(a,b,c>0\right)\)
Áp dụng TCDTSBN:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{150}{15}=10\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\cdot10=30\left(kg\right)\\b=5\cdot10=50\left(kg\right)\\c=7\cdot10=70\left(kg\right)\end{matrix}\right.\)
Bài 4:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-21}{7}=-3\)
Do đó: x=-6; y=-15
Có: \(f\left(x\right)=ax^2+bx+c=5\) với mọi x
=> \(f\left(2\right)=4a+2b+c=5\)
=> \(4a+2b+c-5=5-5=0\)
GT a // b, c ⊥ a
KL c ⊥ b
Chứng minh:
Do a // b
⇒ ∠bKH = ∠aHc (đồng vị)
Mà ∠aHc = 90⁰ (do c ⊥ a)
⇒ ∠bKG = 90⁰
Vậy c ⊥ b
Câu 13: D
Câu 16: B
Câu 17: D
Câu 18: B
Câu 19: C
Câu 20: B
12:
1: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
2: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
3: ΔBCF cân tại B
mà BD là phân giác
nên BD vuông góc CF
Bài 5:
x-y-3=0
=>x-y=3
\(M=x^3-x^2y-3x^2+xy-y^2-4y+x+2021\)
\(=x^2\left(x-y\right)-3x^2+y\left(x-y\right)-4y+x+2021\)
\(=3x^2-3x^2+3y-4y+x+2021\)
=x-y+2021
=3+2021
=2024
Bài 4:
x=2999 nên x+1=3000
\(F\left(x\right)=x^{99}-3000x^{98}+3000x^{97}-...+3000x-1\)
\(=x^{99}-x^{98}\left(x+1\right)+x^{97}\left(x+1\right)-...+x\left(x+1\right)-1\)
\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-...+x^2+x-1\)
=x-1
=2998
Bài 3:
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
Do đó: ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAN vuông tại A và ΔMDC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAN=ΔMDC
=>MN=MC
=>ΔMNC cân tại M
b: Ta có: ΔMAN=ΔMDC
=>AN=DC
Ta có: BA+AN=BN
BD+DC=BC
mà BA=BD và AN=DC
nên BN=BC
=>B nằm trên đường trung trực của NC(1)
Ta có: MN=MC
=>M nằm trên đường trung trực của NC(2)
Ta có: IN=IC
=>I nằm trên đường trung trực của NC(3)
Từ (1),(2),(3) suy ra B,M,I thẳng hàng