K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có

AB=AC
AM chung

Do đó: ΔAMB=ΔAMC

Suy ra: MB=MC

b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có

AM chung

\(\widehat{DAM}=\widehat{EAM}\)

Do đó:ΔADM=ΔAEM

Suy ra: MD=ME

hay ΔMDE cân tại M

c: Ta có: ΔADM=ΔAEM

nên AD=AE
Xét ΔABC có AD/AB=AE/AC

nên DE//BC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

11 tháng 5 2017

ta sẽ làm gì với cái này :D

11 tháng 5 2017

bạn làm hôj mjk

10 tháng 5 2017

Cộng, trừ đa thức

10 tháng 5 2017

Mai được không?

vòng 18 đó bạn

mình cũng thi nè

chúc bạn thi tốt nha

hahahahahaha

16 tháng 3 2017

thi v18 bn à, mk ở bảng A thi hôm qua r (15/3) còn B thi 20/3

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)

2 tháng 11 2017

\(P=\sqrt{\left(x-\dfrac{3}{4}\right)^2}+\dfrac{1}{4}\)

\(=\left|x-\dfrac{3}{4}\right|+\dfrac{1}{4}\)

Ta có : \(\left|x-\dfrac{3}{4}\right|\ge0\forall x\Rightarrow\left|x-\dfrac{3}{4}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

\(\Rightarrow P\ge\dfrac{1}{4}\)

Dấu "=" xảy ra

\(\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)

Vậy GTNN của P là \(\dfrac{1}{4}\) khi x = \(\dfrac{3}{4}\)

2 tháng 11 2017

cảm ơn..........vuivuivuivui

23 tháng 4 2017

Giải:

Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)

Nên \(2016a+13b-1\)\(2016^a+2016a+b\) là 2 số lẻ \((*)\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn

Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ

Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))

Trường hợp 2: Nếu \(a=0\) thì:

\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)

\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)

Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)

\(13b-1>b+1\)

\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)

\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)

\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)

Vậy \(\left(a,b\right)=\left(0;12\right)\)

b: |2x-1|<5

=>2x-1>-5 và 2x-1<5

=>2x>-4 và 2x<6

=>-2<x<3

mà x là số nguyên dương

nên \(x\in\left\{1;2\right\}\)

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

31 tháng 8 2017

B C' A' A

Ta có : A'BC' + ABC' = 180\(^0\)

=> Theo từng trường hợp , A'BC' + ABC' = 180\(^0\)