Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(x\left(x+1\right)-\left(2x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
d: Ta có: \(\left(x-1\right)^2-4\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x-1-2x-4\right)\left(x-1+2x+4\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\end{matrix}\right.\)
a: \(x^2-4x-5=\left(x-5\right)\left(x+1\right)\)
b: \(x^2-3x+2=\left(x-2\right)\left(x-1\right)\)
d: \(2x^2-3x+1=\left(x-1\right)\left(2x-1\right)\)
k: \(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)
\(\Leftrightarrow4x^2-12x-4x^2+9=-3\)
=>-12x=-12
hay x=1
\(4x\left(x-3\right)-\left(2x+3\right)\left(2x-3\right)=-3\)
\(4x^2-12x-4x^2+9+3=0\)
\(12-12x=0\\ \Rightarrow1-x=0\\ \Rightarrow x=1\)
\(\Leftrightarrow\left(3x+7\right)\left(2x-5\right)=0\)
=>x=-7/3 hoặc x=5/2
\(2x\left(3x+7\right)-15x-35=0\\ \Rightarrow2x\left(3x+7\right)-\left(15x+35\right)=0\\ \Rightarrow2x\left(3x+7\right)-5\left(3x+7\right)=0\\ \Rightarrow\left(2x-5\right)\left(3x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{3}\end{matrix}\right.\)
1) \(x^3-8x+7=\left(x-1\right)\left(x^2+x-7\right)\)
2) \(x^3+8x^2-9=\left(x-1\right)\left(x^2+9x+9\right)\)
3) \(3x^3-4x+1=\left(x-1\right)\left(3x^2+3x-1\right)\)
4) \(x^4-3x^2+3x-1=\left(x-1\right)\left(x^3+x^2-2x+1\right)\)
5) \(x^4-5x^2+4=\left(x-1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
1: Ta có: \(x^3-8x+7\)
\(=x^3-x-7x+7\)
\(=x\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-7\right)\)
2: Ta có: \(x^3+8x^2-9\)
\(=x^3-x^2+9x^2-9\)
\(=x^2\left(x-1\right)+9\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^2+9x+9\right)\)
3: Ta có: \(3x^3-4x+1\)
\(=3x^3-3x-x+1\)
\(=3x\left(x-1\right)\left(x+1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(3x^2+3x-1\right)\)
4: Ta có: \(x^4-3x^2+3x-1\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-3x\cdot\left(x-1\right)\)
\(=\left(x-1\right)\cdot\left(x^3+x+x^2+1-3x\right)\)
\(=\left(x-1\right)\left(x^3+x^2-2x+1\right)\)
Bài `4`
`1, 2y(x+2)-3x-6`
`=2y(x+2) -(3x+6)`
`=2y(x+2) -3(x+2)`
`=(x+2)(2y-3)`
`2, 3(x+4) -x^2-4x`
`=3(x+4)-(x^2+4x)`
`=3(x+4) -x(x+4)`
`=(x+3)(3-x)`
`3, 2(x+5) -x^2-5x`
`=2(x+5)-(x^2+5x)`
`=2(x+5)-x(x+5)`
`=(x+5)(2-x)`
`4, x^2 +6x-3(x+6)`
`= (x^2+6x) -3(x+6)`
`=x(x+6)-3(x+6)`
`=(x+6)(x-3)`
`5, x(x+y) -5x-5y`
`=x(x+y) -(5x+5y)`
`=x(x+y)-5(x+y)`
`=(x+y)(x-5)`
`6,x(x-y)+2x-2y`
`=x(x-y)+2(x-y)`
`=(x-y)(x+2`
a, Xét tam giác AIB và tam giác CID có;
AI = CI ( vì I là trung điểm AC)
BI = DI ( vì I là trung điểm BD)
góc AIB = góc DIC ( cặp góc đối đỉnh )
=> tam giác AIB = tam giác CID ( c.g.c) (đpcm)
b. Xét tứ giác ABCD có: hai đường chéo AC và BD cắt nhau tại trung điểm I của mỗi đường => ABCD là hình bình hành
=> AD = BC và AD // BC (đpcm)
c.Do ABCD là hình bình hành (cmt)
=> AB // DC
=>góc DCA = góc BAC ( hai góc so le trong)
=> để CD vuông góc với AC thì góc DCA = 90o hay góc BAC = 90o hay tam giác ABC phải vuông tại A
Vậy điều kiện để CD vuông góc với AC là tam giác ABC phải vuông tại A
=))) Viết nhiều qué k cho mình nhe :333
b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
\(\Leftrightarrow-4x+3+5x+2=0\)
\(\Leftrightarrow x=-5\)