K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2021

Ta có:\( \widehat{BIJ}=\widehat{BAI}+\widehat{ABI}\)
\(=\widehat{IAC}+\widehat{IBC}\) (I là tâm đường tròn nội tiếp tam giác ABC)

Xét (O) : \(\widehat{JAC}=\widehat{JBC}\)

Nên \( \widehat{BIJ}=\widehat{JBC}+\widehat{IBC}=\widehat{IBJ}\)

Suy ra tam giác BIJ cân tại J nên JB=JI 
J ∈đường trung trực của BI
Chứng minh tương tự có: JI=JC nên J ∈đường trung trực của IC
Suy ra J là tâm đường tròn ngoại tiếp tam giác BIC
b, Xét O có \(\widehat{JBK} =90^o\)
nên tam giác JBK vuông tại B

BE là đường cao (OB=OC;JB=JC nên OJ trung trực BC)

suy ra \(JB^2=JE.JK\) hay \(JI^2=JE.JK\)
b, Xét (O) có\( \widehat{SBJ}=\widehat{BAJ}=\widehat{JBC} \)(góc tạo bởi tia tt và dây cung và góc nội tiếp cùng chắn cung JB)
suy ra BJ là đường phân giác trong\( \widehat{SBE}\)

\(BJ⊥ BK \)nên BK là đường phân giác ngoài tam giác SBE 

suy ra\( \dfrac{SJ}{JE}=\dfrac{SK}{EK}\)

hay \(SJ.EK=SK.JE\)

c, Đặt L là tâm đường tròn bàng tiếp tam giác ABC suy ra A;J;L thẳng hàng
CL phân giác ngoài góc C;CI phân giác ngoài góc C

suy ra undefined
JI=JC nên \(\widehat{JIC}=\widehat{JCI}\)

\( \widehat{JIC}+ \widehat{ILC}=90^o\)

\(\widehat{JCI}+ \widehat{JCL}=90^o\)

nên  \(\widehat{ILC}= \widehat{JCL}\)

suy ra JC=JL nên J là trung điểm IL

Có:\( \widehat{ACL}=\widehat{ACI}+90^o\)

\(\widehat{AIB}=\widehat{ACI}+90^o\)

nên  \(\widehat{ACL}=\widehat{AIB}\)

Lại có: \(\widehat{LAC}=\widehat{BAI}\)

nên tam giác ABI \(\backsim\) tam giác ALC

suy ra \(AB.AC=AI.AL\)

Có trung tuyến SB SC cát tuyến SDA nên tứ giác ABDC là tứ giác điều hòa với \(AB.DC=BD.AC=\dfrac{1}{2}.AD.BC\)

suy ra \(BD.AC=AD.EC\)

cùng với\( \widehat{BDA}=\widehat{ECA}\)

nên tam giác ABD đồng dạng AEC

suy ra \(AB.AC=AD.AE;\widehat{BAD}=\widehat{EAC}\)

vậy \(AD.AE=AI.AL;\widehat{DAI}=\widehat{LAE}\) (do AJ là phân giác góc A)

từ đây suy ra tam giác ADI\( \backsim\) tam giác ALE

nên \(\widehat{ADI}=\widehat{ALE}\)

mà \( \widehat{ADI}= \widehat{AJM}=\widehat{ALE}\)

nên JM//LE

J là trung điểm IL nên JM đi qua trung điểm IE (đpcm)