K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

Gọi n;n+1;n+2;n+3;n+4 là 5 số tự nhiên liên tiếp

\(.\)Nếu n \(⋮\)5 \(\Rightarrow\)đpcm

\(.\)Nếu n không chia hết cho 5 => n = 5k + 1 hoặc n = 5k +  2 hoặc n = 5k + 3 hoặc n = 5k + 4

- Với n = 5k + 1   => n + 4 = 5k + 5 \(⋮\)5

- Với n = 5k + 2 => n + 3 = 5k + 5 \(⋮\)5

- Với n = 5k + 3 => n + 2 = 5k + 5  \(⋮\)5

- Với n = 5k + 4 => n + 1 = 5k + 5 \(⋮\)5

Vậy trong 5 số tự nhiên liên tiếp có một số luôn chia hết cho 5

16 tháng 10 2017

Gọi 5 số tự nhiên liên tiếp là a, a + 1, a+2, a+3,a+4

Ta có:

a+a+1+a+2+a+3+a+4

= ( a+a+a+a+a) + ( 1 + 2 + 3 + 4 )

= 5.a+10

= 5. ( a + 2 ) chia hết cho 5

Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5

9 tháng 10 2017

a) Gọi 3 STN liên tiếp là a; a+1 ; a+2.

Ta có: a + a+1 + a+2 = a+a+a + (1+2) = 3a + 3.

Vì 3a và 3 chia hết cho 3 => 3a+3 chia hết cho 3 hay tổng 3 STN liên tiếp chia hết cho 3

30 tháng 10 2017

a) Gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )

Ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3

Vậy tổng của 3 số liên tiếp chia hết cho 3

b) Gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )

Ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )


 

10 tháng 12 2017

gọi 3 số tự nhiên liên tiếp là a;a+1;a+2

tổng của 3 số tự nhiên liên tiếp:

a + a + 1 + a + 2

= (a+a+a) + (1+2)

= a.3 + 3

vì 3 \(⋮\)3 => a.3 \(⋮\)3             (1)

\(⋮\)3                      (2)

(1)(2) => a.3 + 3 chia hết cho 3

vậy tổng của 3 số tự nhiên liên tieps chia hết cho 3

25 tháng 6 2017

a,

Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:

a + a + 1 + a + 2 = 3a + 3 

Mà 3a \(⋮3;3⋮3\)

=> 3a + 3 \(⋮3\)

Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3

b, 

Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư

a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2 

Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2 

Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2

c, 

Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:

a[a + 1] 

*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2

* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2

Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2

d, 

Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:

a[a+1][a+2]

* cm a[a+1][a+2] chia hết cho 2

** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

Vậy a[a+1][a+2] chia hết cho 2

* cm a[a+1][a+2] chia hết cho 3

Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2

** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

Vậy a[a+1][a+2] chia hết cho 3

Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3

e, 

2 + 22 + 23 + 24 + ... + 260 

= 2[1 + 2 + 22 + 23 + 24 + ... + 260\(⋮2\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]

= 14 + 24.14 +... + 256.14

= 7 . 2[1 + 24 + ... + 256\(⋮7\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 5.6 + 25.5.6 + ... + 255.5.6

= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 15.2 + 25.15.2 + ... + 255.15.2

= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)

Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15

g, 

102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]

               = 999.....9999 [2004 chữ số 9] 

Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]

=> 102005 - 1 chia hết cho 9

Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]

=> 102005 - 1 chia hết cho 3

Vậy 102005 - 1 chia hết cho 3 và 9

h, 

Ta có:

102005 + 2 = 102005 - 1 + 3

Mà 102005 - 1 chia hết cho 3 [chứng minh trên]

Lại có: 3 chia hết cho 3

=> 102005 + 2 chia hết cho 3

Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:

1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9

Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]

13 tháng 10 2018

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

26 tháng 9 2017

Ta có : \(a+\left(a+1\right)+\left(a+2\right).\)

\(\Rightarrow a+a+a+a+2=3a+3=3.\left(a+1\right)\)

Vì  \(3⋮3\)

\(\Rightarrow3.\left(a+1\right)⋮3\)

Hay \(a+\left(a+1\right)+\left(a+2\right)⋮3\)