Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (a - b + c) - (a + c) = -b
Xét vế trái, ta có:
( a - b + c ) - ( a + c ) = a - b + c - a - c
= a - a + c - c - b
= 0 + 0 - b = - b đpcm
2) (a + b) - (b - a) + c = 2a + c
xét vế trái, ta có: ( a + b ) - ( b - a ) + c = a + b - b + a + c
= a + a + b - b + c
= 2a + c đpcm
3) -(a + b - c) + (a - b - c) = -2b
Xét vế trái, ta có: - a - b + c + a - b - c = -a + a - b - b + c - c
= 0 - ( b + b ) + 0
= -2b đpcm
4) a(b + c) - a(b + d) = a(c - d)
5) a(b - c) + a(d + c) = a(b +d)
Các phần còn lại bạn làm tương tự 3 phần đầu nhé, sử dụng tính chất phân phối của phép nhân với phép cộng, giao hoán, kết hợp và biết được 2 trường hợp phá dấu ngoặc.
+ Đối với dấu cộng: Khi phá ngoặc, các dấu trong ngoặc giữ nguyên.
+ Đối với dấu trừ: Khi phá ngoặc, các dấu trong ngoặc thay đổi ( âm thành dương và ngược lại )
1) (a – b + c) – (a + c) = -b
Xét VT: (a – b + c) – (a + c) = a -b +c -a -c
= (a -a) + (c-c) -b
= -b = VP
⇒ ĐPCM
2) (a + b) – (b – a) + c = 2a + c
Xét VT: (a + b) – (b – a) + c = a +b -b +a +c
= (a +a) + (b-b) +c
= 2a +c = VP
⇒ ĐPCM
3) - (a + b – c) + (a – b – c) = -2b
Xét VT: - (a + b – c) + (a – b – c) = -a -b +c +a -b -c
= ( -a+a) - (b+b) + (c-c)
= -2b = VP
⇒ ĐPCM
4) a(b + c) – a(b + d) = a(c – d)
Xét VT: a(b + c) – a(b + d) = ab +ac -ab -ad
= (ab -ab) + a(c -d)
= a.(c-d) = VP
⇒ ĐPCM
5) a(b – c) + a(d + c) = a(b + d)
Xét VT: a(b – c) + a(d + c) = ab -ac +ad +ac
= ( -ac +ac) + a(b+d)
= a( b+d) = VP
⇒ ĐPCM
6) a.(b – c) – a.(b + d) = -a.( c + d)
Xét VT: a.(b – c) – a.(b + d) = ab - ac -ab -ad
= (ab -ab) - a(c +d)
= -a.(c+d) = VP
⇒ ĐPCM
a) \(\frac{a}{-b}\) và \(\frac{-a}{b}\)
Ta thấy:a.b=-a.-b(Trừ nhân trừ bằng cộng)
Nên \(\frac{a}{-b}\) và \(\frac{-a}{b}\) luôn bằng nhau!
b)\(\frac{-a}{-b}\) và \(\frac{a}{b}\)
Ta thấy :-a.b=a.-b(VD:-1.2=-2.1)
Nên \(\frac{-a}{-b}\) và \(\frac{a}{b}\) luôn luôn bằng nhau!
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
Ta có : a+b+c+d chia hết cho 9
=> Tất cả các số a, b , c , d đều chia hết cho 9
Mặt khác : abcd=a×1000+b×100+c×10+d
Mà a×1000chia hết cho 9
b×100chia hết cho 9
c×10chia hết cho 9
d chia hết cho 9
=>đpcm
Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)
=>A<1/2+1/3=5/6<3/2
lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy
k minh nha
ta có : ( a-b) - (b+c) + ( c-a) - (a-b-c) = a-b-b-c+c-a-a+b+c=-b-a+c = -(b+a-c) -(b +a-c) = -(a+b-c)