K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

\(S=\overline{abc}+\overline{bca}+\overline{cab}\)

\(S=100a+10b+c+100b+10c+a+100c+10a+b\)

\(S=111a+111b+111c\)

\(S=111\left(a+b+c\right)\)

\(S=37.3.\left(a+b+c\right)\)

Để \(S\) là số chính phương thì \(3\left(a+b+c\right)\) là một lũy thừa của \(37\) với số mũ lẻ 

\(\Rightarrow\)\(3\left(a+b+c\right)⋮37\)\(\Rightarrow\)\(a+b+c⋮37\)

Mà \(3\le a+b+c\le27\) nên \(a+b+c⋮̸37\)

Vậy \(S\) không là số chính phương 

Chúc bạn học tốt ~ 

21 tháng 10 2018

Ta có S=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)

          S=111(a+b+c)=37.3(a+b+c)

Vì 0<a+b+c< hoặc =27 nên a+b+c ko chia hết cho 37

Mặt khác (3;37)=1 nên 3(a+b+c) ko chia hết cho 37

=> S ko thể là số chính phương (đpcm)

Hok tốt

        

27 tháng 9 2015

Bạn có thể vào http://olm.vn/hoi-dap/question/96113.html

16 tháng 3 2017

\(\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b\)

\(=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Do (3;37)=1 nên để \(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương ta cần a+b+c=111 hoặc a+b+c=1112n+1 (*)

Mà \(a;b;c\le9\)và \(a\ne0\) =>  \(a+b+c\le27\)   nên không thể thỏa mãn (*) được

=> Ta không thể tìm được các số tự nhiên a;b;c => đpcm

2 tháng 9 2020

\(A=\overline{abc}+\overline{bca}+\overline{cab}\)

\(A=100a+10b+c+100b+10c+a+100c+10a+b\)

\(A=111a+111b+111c\)

\(A=111\left(a+b+c\right)\)

Với A là số chính phương chia hết cho 111 thì A chia hết cho 12321

nên a+b+c phải chia hết cho 111 và a+b+c khác 0 thì không có số a,b,c thỏa mãn

vậy A không là số chính phương

 S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương S

tích nha

2 tháng 4 2016

abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111(a+b+c)

để 111(a+b+c)là số chính phương <=>a+b+c=111^2n+1              (n là số tự nhiên)              =>a+b+c>hoặc =111            (1)

mà 0<a:b:c<hoặc =9 =>2<a+b+c<28                                                                                                                            (2)

ta thấy (1) và (2) đối nghịch nhau nên a+b+c khác 111^2n+1 vậy abc+bca+cab ko phải là số chính  phương      (đpcm)

nhớ k cho mk nha bạn

22 tháng 5 2017

Ta có S = abc bca cab

             = 100a+10b+c+100b+10c+a+100c+10a+b

             = 111a+111b+111c

             = 111(a+b+c) = 37.3(a+b+c)

Giả sử nếu S là số chính phương thì 3(a+b+c)=37

                                                         \(\Rightarrow3\left(a+b+c\right)⋮37\)          

                                                        \(\Rightarrow a+b+c⋮37\)

Điều trên vô lý vì \(1\le a+b+c\le27\)

=> S không phải là số chính phương

22 tháng 5 2017

Hk rồi mk cx phải hs ak ??????????

26 tháng 7 2016

M=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b) = 1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn

Vậy M không phải là số chính phương

1 tháng 8 2016

Cảm ơn bạn bạn

1 tháng 2 2016

 

 S = abc   + bca + cab

=a.100+b.10+c+b.100+c.10+a+c.100+a.10+b

=a.(100+10+1)+b.(100+10+1)+c.(100+10+1)

=a.111+b.111+b.111

=(a+b+c).111

=> (a+b+c) thuộc {1;2;3;4;5;6;7;8;9}

=> S thuộc {111;222;333;444;555;666;777;888;999}

nhé 

1 tháng 2 2016

 

 S = abc   + bca + cab

=a.100+b.10+c+b.100+c.10+a+c.100+a.10+b

=a.(100+10+1)+b.(100+10+1)+c.(100+10+1)

=a.111+b.111+b.111

=(a+b+c).111

=> (a+b+c) thuộc {1;2;3;4;5;6;7;8;9}

=> S thuộc {111;222;333;444;555;666;777;888;999}

 

nhé  s4.jpgHoàng Thu Hà

29 tháng 8 2016

=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111(a+b+c)

Vì 111 không phải là số chính phương nên S khoongphair là số chính phương