
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt A = 21 + 22 +.......+299 + 2100 (1)
2A = 22 +.......+299 + 2100 + 2101 (2)
Lấy (2) - (1)
\(2^1+2^2+....+2^{99}+2^{100}⋮3\)
\(\Rightarrow\left(2^1+2^2+2^3\right)+.....+\left(2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow2.\left(1+2\right)+.....+2^{98}.\left(1+2\right)\)
\(\Rightarrow2.3+......+2^{98}.3\)
\(\Rightarrow3.\left(2+...+2^{98}\right)⋮3\)
\(\RightarrowĐPCM\)

A=(2^1+2^2)+(2^3+2^4)+.....+(2^99+2^100)
A=(2+2^2)+2^2(2+2^2)+.....+2^98(2+2^2)
A=6+2^2.6+....+2^98.6
A=6+2^2.6+......+2^98.3.2
Vậy A chia hêt cho 3

mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3

a) 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3
(2^1 + 2^2) + (2^3+2^4)+.....+(2^99+2^100)
2.(1+2)+2^3.(1+2)+....+2^99(1+2)
(2+2^3+...+2^99).(1+2)
(2+2^3+...+2^99).3
Vì 3 chia hết cho 3 nên (2+2^3+...+2^99).3 chia hết cho 3
hay 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3

\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)
câu b tương tự
\(S3=16^5+21^5\)
vì 16+21=33 chia hết cho 33
=>165+215 chia hết cho 33
P/S: theo công thức:(n+m chia hết cho a=> nb+mb chia hết cho a)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)

a) Đặt A= \(1+2+2^2+...+2^7=\left(1+2\right)\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=3+2^2\left(1+2\right)+...+2^6\left(1+2\right)\)
\(=3\left(1+2^2+...+2^6\right)\)
Vậy A chia hết ho 3
Câu b,c tương tư
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 3
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia hết cho 3
K MIK NHA BẠN !!!!!!!!!!!!!!!
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 3
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia cho 3 bằng 2 dư 2
K MIK NHA BẠN !!!!!!!!!!!!!!!