Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
a, \(\dfrac{1}{2}\) - ( - \(\dfrac{1}{3}\) ) + \(\dfrac{1}{23}\) + \(\dfrac{1}{6}\)
= \(\dfrac{5}{6}\) + \(\dfrac{1}{23}\) + \(\dfrac{1}{6}\)
= 1 + \(\dfrac{1}{23}\)
= \(\dfrac{24}{23}\)
b, \(\dfrac{11}{24}\) - \(\dfrac{5}{41}\) + \(\dfrac{13}{24}\) + 0,5 - \(\dfrac{36}{41}\)
= (\(\dfrac{11}{24}\) + \(\dfrac{13}{24}\)) - ( \(\dfrac{5}{41}\) + \(\dfrac{36}{41}\)) + 0,5
= 1 - 1 + 0,5
= 0,5
c,\(-\dfrac{1}{12}-\left(\dfrac{1}{6}-\dfrac{1}{4}\right)\)
=\(-\dfrac{1}{12}-\left(-\dfrac{1}{12}\right)\)
=0
d, \(\dfrac{1}{6}-\left[\dfrac{1}{6}-\left(\dfrac{1}{4}+\dfrac{9}{12}\right)\right]\)
= \(\dfrac{1}{6}-\left[\dfrac{1}{6}-1\right]\)
= \(\dfrac{1}{6}-\left(-\dfrac{5}{6}\right)\)
= 1
a) \(\dfrac{13}{20}+\dfrac{3}{5}+x=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{5}{4}+x=\dfrac{5}{6}\)
\(\Rightarrow x=\dfrac{5}{6}-\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{-5}{12}\)
b) \(x+\dfrac{1}{3}=\dfrac{2}{5}-\dfrac{-1}{3}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{11}{15}\)
\(\Rightarrow x=\dfrac{11}{15}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{5}\)
c)\(\dfrac{-5}{8}-x=\dfrac{-3}{20}-\dfrac{-1}{6}\)
\(\dfrac{-5}{8}-x=\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-5}{8}-\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-77}{120}\)
d) \(\dfrac{3}{5}-x=\dfrac{1}{4}+\dfrac{7}{10}\)
\(\Rightarrow\dfrac{3}{5}-x=\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{3}{5}-\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{-7}{20}\)
e) \(\dfrac{-3}{7}-x=\dfrac{4}{5}+\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{-3}{7}-x=\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-3}{7}-\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-59}{105}\)
g) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-13}{12}\)
a) \(...=-\dfrac{1}{4}.\dfrac{4}{17}.\left(-\dfrac{63}{21}\right).\left(-\dfrac{7}{12}\right)\)
\(=-\dfrac{1}{17}.\dfrac{63}{21}.\dfrac{7}{12}\)
\(=-\dfrac{7}{68}\)
b) \(...=-\dfrac{2}{5}.\dfrac{4}{15}-\dfrac{3}{10}.\dfrac{4}{15}\)
\(=\dfrac{4}{15}\left(-\dfrac{2}{5}-\dfrac{3}{10}\right)\)
\(=\dfrac{4}{15}\left(-\dfrac{4}{10}-\dfrac{3}{10}\right)\)
\(=\dfrac{4}{15}.\left(-\dfrac{7}{10}\right)=-\dfrac{14}{75}\)
c) \(...=21-\dfrac{15}{4}:\left(\dfrac{9}{24}-\dfrac{4}{24}\right)\)
\(=21-\dfrac{15}{4}:\dfrac{5}{24}\)
\(=21-\dfrac{15}{4}.\dfrac{24}{5}\)
\(=21-3.6=3\)
d) \(...=\left(-\dfrac{3}{4}+\dfrac{2}{5}\right).\dfrac{7}{3}+\left(\dfrac{3}{5}-\dfrac{1}{4}\right).\dfrac{7}{3}\)
\(=\dfrac{7}{3}\left(-\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{3}{5}-\dfrac{1}{4}\right)\)
\(=\dfrac{7}{3}\left(-\dfrac{3}{4}-\dfrac{1}{4}+\dfrac{2}{5}+\dfrac{3}{5}\right)\)
\(=\dfrac{7}{3}\left(-1+1\right)=0\)
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
\([\)6+(\(\dfrac{1}{2}\))3\(]\):\(\dfrac{3}{12}\)=\([\)6+\(\dfrac{1}{8}\)\(]\):\(\dfrac{1}{4}\)=\(\dfrac{49}{8}\):\(\dfrac{1}{4}\)=\(\dfrac{49}{2}\).
a) \(0,6+\dfrac{2}{3}=\dfrac{6}{10}+\dfrac{2}{3}=\dfrac{3}{5}+\dfrac{2}{3}=\dfrac{9}{15}+\dfrac{10}{15}=\dfrac{19}{15}\)
b) \(-\dfrac{5}{12}+0,75=-\dfrac{5}{12}+\dfrac{75}{100}=-\dfrac{5}{12}+\dfrac{3}{4}=-\dfrac{5}{12}+\dfrac{9}{12}=\dfrac{4}{12}=\dfrac{1}{3}\)
c) \(\dfrac{1}{3}-\left(-0,4\right)=\dfrac{1}{3}+\dfrac{4}{10}=\dfrac{1}{3}+\dfrac{2}{5}=\dfrac{5}{15}+\dfrac{6}{15}=\dfrac{11}{15}\)
d) \(1\dfrac{3}{5}+\dfrac{5}{6}=\dfrac{8}{5}+\dfrac{5}{6}=\dfrac{48}{40}+\dfrac{25}{30}=\dfrac{73}{30}\)
\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{97}{98}\cdot\dfrac{98}{99}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot98}{2\cdot3\cdot4\cdot...\cdot99}\)
\(=\dfrac{1}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{99}{98}.\dfrac{100}{99}=\dfrac{100}{2}=50\)
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940